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Abstract

The Residual-Free Bubble Method
for Problems with Multiple Scales

Andrea Cangiani Doctor of Philosophy
St Hugh’s College Trinity Term 2004

This thesis is devoted to the numerical analysis and development of the residual—free bubble
finite element method.

We begin with an overview of known results and properties of the method, showing how
techniques used on a range of multiscale problems can be cast into the framework of the
residual—free bubble method.

Further, we present an a priori error analysis of the method applied to convection—-dominated
diffusion problems on anisotropic meshes. The result has implications for the problem of
parameter—tuning in classical stabilised finite element methods (for instance, the streamline-
diffusion finite element method). We show how the local SD-parameter should be chosen on
meshes with high aspect-ratios.

A new algorithm named RFBe (enhanced residual—free bubble method) is proposed for the
resolution of boundary layers on coarse meshes. The residual-free bubble finite element space
is augmented locally by ad hoc bubble functions with support on two elements sharing a
particular edge. The idea is presented in a general framework to highlight its applicability to
a wide range of multiscale problems.

Finally, we derive an a posteriori error estimate for the method and describe an associated
adaptive algorithm designed to minimise the computational effort required for reducing the
error below a prescribed tolerance. Both norm—error and linear—functional-error bounds are
considered. We also propose an automatic procedure for switching off bubble stabilisation
locally during the mesh refinement process (hb—adaptivity) to further reduce the computational
cost.
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Chapter 1

Introduction

The residual-free bubble (RFB) method is a two-level finite element method originally in-
troduced for the stable and accurate approximation of numerical solutions to convection—
dominated diffusion problems. The potential of the method, though, is better appreciated by
interpreting it as a general procedure for the solution of multiscale problems.

In the following sections we outline the difficulties encountered in the numerical solution
of multiscale problems and describe a class of techniques used to overcome such difficulties.
Special attention is devoted to the connections of the techniques described with the RFB
method. The importance of convection—diffusion type equations in applied mathematics and
numerical analysis, still in the context of the application of RFB, is also discussed.

The chapter concludes with an outline of this thesis.

1.1 Multiscale problems

Many computationally challenging problems that arise in science and engineering exhibit mul-
tiscale behaviour. The list is long, including turbulent transport in high Reynolds number
flows, flow through porous media, structural analysis of composite and foam materials, fine—
scale laminates and crystalline microstructures, weather forecasting and large-scale molecular
dynamic simulations, to mention just a few.

Sometimes the data of the model is incomplete (for example, the detailed properties of
the underlying media may not be known) and averaging techniques need to be employed to
‘construct’ a coarse model that can be solved (see, for example, the review article by Farmer [43]
on upscaling' in porous media).

However, we focus here on multiscale problems admitting a representation through a given
differential operator with known coefficients and on their approximate solution using finite
element methods (FEM).

'In upscaling a simple model is postulated, as when postulating a model for a new physical situation, and
then validated through physical experiments or through a few numerical experiments on the detailed model.



1.1 MULTISCALE PROBLEMS 2

Classical computational algorithms are designed to operate at a certain preselected scale
fixed by the choice of a discretisation parameter. If the scales in the model are very diverse,
representing and numerically computing on all physical scales results in excessive algorithmic
complexity, both in terms of computation times and memory requirements. Moreover, often
one is only interested in quantifying some coarse—scale or macroscopic features of the problem.

In the presence of nonlinearities in the model, if the discretisation at a coarse level ignores
the fine scale information, then the solution might not be physically meaningful. In other
words, for a coarse scale model to be successful, the influence of the fine, unresolvable scales
on coarse scales must be incorporated.

It is, then, natural to follow a two-level approach: first, the effect of the unresolvable
(subgrid) scales is incorporated into the coarse scale model which is subsequently solved ap-
proximately using the preferred analytical or numerical method.

This is the idea behind the classical theory of homogenization, upscaling and their numerical
counterparts. Homogenization (see [13], [34]) refers to a group of techniques aimed at replacing
a detailed mathematical model by a simpler one that can reproduce, in some asymptotic limit,
some average behaviour of the detailed model. The most common approach is the method
of multiple scales, where after appropriate scaling an expansion is derived. In particular, an
effective operator is obtained which approximates the exact operator by taking the effect of fine
scales into account without containing them explicitly. The solution in terms of the effective
operator should provide an approximation of the coarse scale behaviour of the solution of the
original problem. The main application of this technique is in the study of flow through porous
media.

Numerical homogenization or upscaling follows the same pattern, except that the effective
operator is computed numerically (see, for example, Babuska et al. [8], the multiscale finite
element method (MFEM) of Hou et al. [59], [60], the heterogeneous multiscale method (HMM)
of Engquist and E [37], the wavelet—based numerical homogenization of Engquist and Run-
borg [40], the upscaling technique of Durlofsky [36] and Arbogast [6] and local-local upscaling
in general [43]).

Other examples of two-level techniques are given by Franca et al. [45], [47] dealing with
Helmholtz equations at high wave number, the generalised p~-FEM of Matache et al. [70], [92],
and the two—scale FEM of Matache et al. [71] in structural analysis of composite and foam
materials and Babuska and coauthors [7] in damage analysis of fiber composites.

Another common characteristic of many of the methods just mentioned is the use of ad—
hoc approximation spaces (a common idea is, for example, to define the FEM basis functions
through the differential operator at hand). It is understood that to incorporate the effect of
the subgrid scales some extra resolution properties must be included into the approximation
space.

This is certainly a characteristic of the more general variational multiscale method of
Hughes et al. [65], [64] and the related residual-free bubble method of Brezzi and Russo [29],
and Franca and Russo [50] which is the subject of this thesis.
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These methods have been introduced to stabilize standard FEMs in convection—-dominated
diffusion problems with fine scales represented by sharp layers of rapid variation of the solution.

1.2 The residual-free bubble method

Given a bounded polygonal domain © in R™, let £(-,-) be a bilinear functional defined over
some function space, for example V = H}(Q2). We consider the task of solving numerically the
boundary value problem in variational form

find u € V such that
(1.1)

L(u,v) = (f,v) Vv eV.

Throughout this thesis (-,-) denotes the inner product in Lo(£2).

Assume that a partition 7;, (throughout this thesis, h represents the maximum elemental
diameter) of € is given which is conforming, i.e. any two elements in 7, either have a common
face of dimension < n or they do not intersect at all. Further, let ¥ be the skeleton of the
partition 7}, i.e. the union of the boundaries of all elements in 7j,.

Given a piecewise polynomial finite element space V}, on the partition 7y, the residual free
bubble (RFB) space Vgrpp is defined by augmenting V}, with the space of all bubbles, i.e. all
functions with support in 2\ X. That is,

Vrre = Vi, + By,

where

By = P Hy(D).

TET;

This choice is made in order to ensure that all the subgrid scales are representable by the space
Vrrp. The RFB method is the Galerkin formulation of (1.1) on Vrpp, namely
{ find ugrrpp € Vrrp such that ( )
1.2

L(urrp,v) = (f,v) Vv € Vrrp.

As we will see in detail in the next chapter, starting from (1.2) a two—level procedure is
obtained by splitting the solution into its polynomial component u, € V;, and bubble compo-
nent u, € By, and testing separately in Vj, and Bp. At the subgrid level the bubble component
of the solution is obtained by solving the bubble equation

L(up,v) = (f,v) — L(up,v) Vv € By,
This can be done locally. Formally we write

ub|T = L;l(f — Luh)|T VT € 771,
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where L and f are the linear differential operator and function associated with £ and F,
respectively. The second step consists of the solution in terms of the polynomial component,
which has to satisfy

E(uh,vh) + Z (L;l(f — Luh), L*vh)T = (f,vh) Yoy, € Vp; (1.3)
TeTy,

here L* is the differential operator adjoint to L. This is the coarse scale formulation given by
the RFB method.

In practice, the actual computation of the bubble, hidden here in the formal local inversion
of L, is carried out numerically by introducing a subgrid. In this way a fully discrete procedure
is obtained. The choice of the subgrid dictates which fine scales are incorporated into the coarse
scale formulation.

Originally, the residual-free bubble method was defined as a stable FEM for the solution
of convection—dominated diffusion problems following the analogy of using bubble functions to
stabilise mixed finite element approximations [19].

Only recently, in [20] and [16], it became apparent that the RFB method should be seen
as a general technique for solving multiscale problems. Most notably Brezzi and Marini [26]
demonstrated that the RFB method recovers the MEEM of Hou et al. [59].

The MFEM method is a low—order finite element method for the solution of the classical
homogenization problem

~V - (dVu) = f, (1.4)

subject to appropriate boundary conditions, where the components of the tensor d are rapidly
oscillating functions over the computational domain. For instance, this equation can be used
to model single-phase flow in porous media and heat or electrical conduction in composite
materials. When the symmetric conductivity tensor a is oscillatory with periodic oscillations,
it is well-known from the theory of homogenization that the effective equation corresponding
to (1.4) is of the same form as (1.4), with the effective conductivity being symmetric and
constant (see, e.g. [13], [58] and [34]). Unfortunately, the effective coefficient is, in general, out
of reach, and numerical upscaling techniques need to be employed. In particular, the MFEM
for upscaling (1.4) consists of using the standard Galerkin formulation by employing ad-hoc
basis functions obtained by solving (1.4) element-wise with zero forcing term. As detailed in
Section 2.5 of this thesis, the basis functions of the MFEM method are contained in the RFB
space Vgpp and are the sum of a basis function of the space V}, and a bubble function.

Other problems to which the RFB method has been applied include the Stokes problem [49],
the incompressible Navier—Stokes equation [31] and the Helmholtz equation [45]. Moreover,
some results concerning the a posteriori error analysis of the residual-free bubble method and
of the use of the bubble u; as error estimator can be found in [86] and [84], respectively.
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1.2.1 A general framework

An attempt to incorporate the two—scale FEMs described above into a general framework is
found in Brezzi and Marini [25].

The idea behind the general augmented space framework proposed in [25] is to design the
most comprehensive method possible on a fixed partition. The partition may have been fixed
to suit the coarse scales that need to be captured or to the computing power at hand.

To illustrate the method, we consider again the abstract problem in variational form (1.1).
Let ® be the space of traces of V' on the skeleton of the partition 3. A general augmented
subspace is defined by considering all the extensions onto  from a finite-dimensional subspace
of ®. That is, given a subspace ®; C @ of finite dimension, we define the space

Va::{vEV:U‘EE(I)h}.

The RFB finite element space is clearly given by the choice ®;, = V}|x, hence the RFB space
is an instance of the augmented subspace.

Since we aim to be as general as possible, the fact that the space of traces @, is fixed may
seem arbitrary: though the space of traces may itself be subsequently modified where this is
deemed necessary. However, the only limitation is that only approximation spaces conforming
with the partition can be recovered.

The augmented space formulation is obtained, as for RFB, by restricting (1.1) to Vj:

find u, € V, such that
(1.5)

‘C(umva) = (fa Ua) Vg € V.

Formally (1.5) looks like a Galerkin finite element method, although, since V is infinite—
dimensional, it represents more a framework for devising methods than a numerical method
as such.

As we have seen with the RFB method, the idea is that a specific (fully discrete) numerical
method may be recovered from (1.5) by discretising V, appropriately,

Examples of a technique which emerge from the general augmented space formulation that
do not fall into the RFB framework are the MFEM method with oscillatory traces [59], [60],
the generalised Galerkin methods in [74], the method in [9] and the upscaling technique of [6];
see [25] for details.

1.3 Convection—dominated—diffusion problems

The model problem used throughout this thesis is the steady-state convection—diffusion equa-
tion.

From the incipit of K. W. Morton’s book [76] entitled ‘Numerical Solution of Convection—
Diffusion Problems’, we learn that “accurate modelling of the interaction between convective
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and diffusive processes is the most ubiquitous and challenging task in the numerical approxi-
mation of partial differential equations”. Convection—diffusion processes are indeed central to
scientific fields as diverse as physiology, oil reservoir simulation, aerodynamics, meteorology
and financial modelling. Often, convection dominates diffusion leading to an essentially hyper-
bolic (i.e. elliptic singularly perturbed) set of equations. Techniques which are effective for the
numerical solution of elliptic problems with dominant diffusion, such as classical finite element
methods, encounter great difficulties when convection prevails. In this case, localized fine scale
phenomena in the form of propagating near—shocks and sharp transition layers arise, and their
treatment proves to be a challenging computational task.

The evolution of convection—diffusion processes is modelled by the parabolic convection—
diffusion equation which, in its simplest form, reads

u —eAu+a-Vu=f, (1.6)

where a is a velocity field, € the diffusion coefficient and f is a forcing term. The solution u
may represent the concentration of a pollutant in a fluid whose motion is described by a.

For instance, the finite element treatment of the time-dependent equation (1.6) may be
based on a space—time finite element mesh, with basis functions continuous in space but dis-
continuous in time to permit the use of different spatial meshes as the solution evolves. Due to
the singularly perturbed nature of the interaction between convection and diffusion, the choice
of the spatial finite element method is a subtle point.

Indeed, the main difficulties are already encountered in the numerical treatment of the
steady—state version of equation (1.6), namely

—eAu+a-Vu=f. (1.7)

Equation (1.7) will be our model problem throughout this thesis.

The approximation of steady problems is considered to be the core difficulty in the subject
of the numerical solution of convection—diffusion problems. For instance, equation (1.7) is a
fundamental model problem for the field of computational fluid dynamics since its stable and
accurate solution is a crucial step in the treatment of the Oseen problem and, ultimately, of
the incompressible Navier—Stokes equations.

For a complete survey of numerical methods for the solution of (1.7) see, for example,
Morton [76] and Roos, Stynes and Tobiska [82]. Common techniques are ezponential fit-
ting, symmetrization, upwinding and least squares reqularisation. Ad—hoc meshing, like graded
meshes [93] and Shishkin type meshes [69], and adaptive mesh refinement (see, e.g., [41], [11],
[4] and [55]) are also, of course, at the center of the subject. Finally, bubble stabilisation
constitutes an illuminating way of reinterpreting many of the techniques just mentioned. An
example is given by the equivalence of the RFB method with the influential streamline upwind
Petrov-Galerkin (SUPG) method introduced by Hughes and Brooks [63] (see also Johnson and
Névert [66] and Hughes and Brooks [30]). The idea behind the SUPG method is to add to the
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standard Galerkin formulation a diffusion term in the direction of convection:

C(uh,vh) + Z TT(f — Lup, —a - Vvh)T = (f, Uh) Yo, € Vp, (1.8)
TeTh

(the crucial term is (a - Vuy, a - Vo), the other extra term is added to preserve consistency),
with the aim of suppressing the nonphysical numerical oscillations which would otherwise arise.

By comparing (1.8) with (1.3) we immediately see that the stabilisation term introduced
by the SUPG method and the RFB method are identical if vy, is linear on every element and
the effect of the local inversion L;l reduces to multiplication by a constant (which turns out
to be the case if @ and f are constant inside every element).

In (1.8), 71 represents a parameter (the SD-parameter) that needs to be tuned by the user.
Notice that this has no equivalent in (1.3): we say that the RFB method is parameter—free.

1.4 Achievements and outline

The aim of this thesis is to show that the tools and results typical of standard FEMs can
also be applied in the RFB framework. We consider, in particular, the o priori analysis of
the method both on shape regular and anisotropic partitions, the a posteriori analysis of the
method and the application of adaptive mesh refinement techniques.

Moreover, we show that it is possible to drastically improve the approximation properties
of the RFB method by interpreting it as an augmented subspace method and locally enriching
the skeleton space ®; with edge bubbles defined through an appropriate restriction of the
differential operator of the problem.

1.4.1 Outline

The RFB method is rigorously defined in Chapter 2. We then present a result about the
convergence properties of the method applied to second—order elliptic p.d.e.’s in divergence
form on shape regular partitions, due to Brezzi, Marini and Siili [28]. We also report on the
equivalence of the RFB method with the streamline—diffusion or SUPG method and with the
MFEM method. The chapter concludes with notes about the implementation of the method
and, in particular, about the computation of the bubble part of the RFB solution wy.

Subsequent chapters contain the original contributions of this thesis. In particular, in
Chapter 3 we perform the error analysis of RFB on anisotropic meshes. Moreover, we show that
the RFB method delivers the correct choice for the local SD—parameter in classical stabilised
methods.

A general methodology for improving the RFB method is proposed in Chapter 4. We
show that the introduction of edge bubbles, i.e. functions with support on two elements
sharing an edge, improves the stability and accuracy of the method. The edge bubbles are
introduced only on those edges which cross the boundary layer. A refined, specialized, pre—
asymptotic (precisely, in the regime € In(1/e) < ch for a given constant c) a priori error analysis



1.4 ACHIEVEMENTS AND OUTLINE 8

demonstrates the weaknesses of the RFB method which are contrasted with the superior (pre—
asymptotic) approximation properties of the new RFBe method.

Finally, in Chapter 5, we perform the a posteriori error analysis of the RFB method in the
case of linear functionals of the solution, as well as in the case of norms. The efficiency of an
adaptive mesh refinement algorithm, based on the a posteriori error bound obtained, is also
discussed. In particular, we emphasize the relevance of the information contained in the bubble
part of the RFB solution in a posteriori error estimation. In the last section of the chapter
we propose a new ‘hb-adaptive’ algorithm which, while the mesh is refined, automatically
decides whether or not the local evaluation of the bubble (equivalently, the introduction of a
stabilisation term) is crucial; when this is deemed not to be the case, the bubble part of the
solution is locally omitted.

All of the results presented in this thesis are corroborated by numerical experiments.

The thesis concludes with Chapter 6 where we summarize the work presented and we
discuss directions for further research.



Chapter 2

The residual-free bubble method

This chapter is devoted to the definition and the mathematical analysis of the residual—free
bubble (RFB) method.

In particular, we present two definitions of the method which are ultimately equivalent.
The first definition is based on the classical framework of bubble methods in which the given
finite element space V}, is locally augmented with a finite-dimensional space of bubbles, i.e.
functions with support contained in the elements’ interior. Based on such definition, the first
a priori analysis of the method, restricted to linear elements, was presented by Brezzi et al. in
[24]. Their analysis recovers the bounds already known from the theory of stabilised methods
on the linear part of the solution. Moreover, it has the advantage of producing analogous
bounds on the full (augmented) RFB solution.

The more general error bound which we present here, due to Brezzi, Marini and Siili [28],
is based on the second definition of the method, which was suggested by the equivalence of
the RFB method with the variational multiscale method of Hughes [62]. In this case, the
RFB finite element space is defined as the space of all admissible extensions from the set of
piecewise polynomial traces on the skeleton of the triangulation. This definition also inspired
the generalised augmented space formulation by Brezzi and Marini [25] which we also present.

Sangalli [85] has subsequently obtained results similar to those in [28] following a different
argument (see the next chapter) which allowed him to bound the Lo—norm of the error and to
establish local error bounds as well.

In later sections, we introduce the classical stabilised methods for the solution of steady—
state convection—diffusion problems and discuss their relation with two—level methods such as
RFB. The equivalence of RFB with the MFEM method of Hou et al. [59], [60] is also detailed.

The final section of the chapter is dedicated to implementational issues.
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2.1 Definition of the method

Let Q2 be a bounded polygonal domain in R"™. Given the linear second—order elliptic boundary
value problem

Lu=f inQ
(2.1)
u=0 on 012,
we consider its variational formulation
find u € V such that
(2.2)
Lluv) = (fv) eV,

assuming that V = H{(Q) and L(-,-) is a continuous and coercive bilinear functional on V x V.

Let V}, be a finite-dimensional subspace of V', such as a conforming finite element space of
piecewise polynomials defined over a partition 7 of Q. The standard Galerkin method for the
solution of (2.2) consists of approximating the variational formulation (2.2) from V},.

Suppose that we are not satisfied with the approximation properties of V},, but, at the
same time, we are not willing to simply approximate (2.2) on a larger space. For example, the
partition 7 may be the finest we are prepared to work with.

A possible way out is to modify V}, by (temporarily) considering an augmented space V,
obtained by adding to V},, some new degrees of freedom internal to the finite elements. We
can think of the new elemental functions as being defined through a subgrid or as a set of
bubble functions. The main point is that we want such new degrees of freedom to be defined
element—wise so that they can be successively eliminated by static condensation. In this way,
the resulting formulation will be in terms of the initial finite element space. As we shall see,
adding and eliminating bubbles is equivalent to modifying the bilinear form £; ultimately, we
wish to enhance the stability and accuracy of the underlying numerical scheme.

As a first step in this direction, we give the definition of bubble proposed by Brezzi et al.
in [21].

Definition 2.1.1. A bubble (in V', on Ty) is a function b € V' such that the support supp(b)
of b is contained in a single element T € Tp,.

Let Eh C V be a finite dimensional bubble space on Tp; that is,
B, = @ Br,
TeTy,

where, for any T € Ty, the elements of By are characterised by having support in a subset of
T, and By is finite dimensional.

Remark. In this thesis we often regard bubble functions as functions on a given element.
In this case extension by zero elsewhere is assumed.
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Notice that the space V} may already contain bubble functions. For example, if V} is
the space of all piecewise cubic continuous functions, then, for each T" € T,, V), contains a
one—dimensional subspace of cubic bubbles defined on element 7. Since such bubbles can be
eliminated through static condensation, it makes sense to think of them as belonging to the
bubble space §h rather then to V. Keeping this in mind, we consider the augmented space V,
defined by

Vo=V, & Eh, (2.3)

so that any element of V, admits a unique decomposition into the sum of an element of V};, and
an element of Eh.

We name bubble approach or augmented space approach the Galerkin formulation of (2.2)
on V,, that is,

find u, € V, such that
(2.4)

L(tg,vq) = (f,v4) Yo, € V,.

Since in (2.3) we have a direct sum, it follows that we have the unique decompositions u, =
up, + up and v, = vy + v wWith up, v, € Vi, and uy, vy € By. Moreover, for any element T' € T,

we can write
vp|lT = vpr  With vy € Br,

and similarly for u,. Thus, by testing separately in V}, and then in Eh, (2.4) can be re—stated
as follows:

find uy = up + up = up + Z up T € V, such that
TETh
L(un,vn) + Z Lo (upr,vn) = (f,vn) Vup, € Vp, (2.5)
TeT,

L’T(ub,T, Ub,T) + L’T(uh, Ub,T) = (f, Ub,T)T va,T € Br and VT €7,
where the notation L7 (-,-) and (-, )7 indicates that the integrals involved are restricted to the
element 7.

Formally, static condensation is performed by solving element—wise the second equation in
(2.5), or bubble equation:

Lr(up,v07) = (f,0,10)T — L7 (U8, 08,T) Vo, € Br, (2.6)

for up 7 and substituting the resulting expression for u, ¢ into the first equation in (2.5), see,
e.g., [10].
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Before presenting the details of the static condensation procedure, let us introduce a par-
ticular set of bubbles, namely the residual—free bubbles. These were originally proposed by
Brezzi and Russo [29] and Franca and Russo [50].

The idea is to fix By for T' € T, as the set of all solution of (2.6), considered as a problem
in H}(T) (instead of Br), while uy, ranges over Vj,. That is, for each wy, € Vj, we define the
residual-free bubble wy, r € H}(T) as the solution of the variational problem

find w1 € H} (T) such that
(2.7)

Lo(wpr,v) = (f,v)r — Lr(ws,v) = (f — Lwp,v)p Yo € Hy(T).

Since in (2.7) we are testing in the whole space H{(T'), we can also think of w1 as the weak
solution of the problem (2.7) written in terms of the differential operator L, namely

{ wa,T = (f — Lwh)|T inT

(2.8)
wy =0 on 0T

Hence, L(wp, + wy )7 = f|7, which justifies the name residual-free bubble.

If, for example, L7 (-,-) is a continuous and coercive bilinear form over H(T) x H}(T),
then, for every wy, € Vj,, problem (2.7) has a unique solution in H}(T); thus we can consider
the bounded linear operator L' : HY(T) — H}(T) defined as the solution operator of (2.8).

Finally, to ensure that the bubble space is linear, we define the residual-free bubble space
Eh element—wise as

Br|r = {L7'(\f — Lwp)|7,wp, € Vi, X € R} VT € Tp,. (2.9)

Notice that dim(By|7) < dim(Vy|r).
With such definition of the bubble space, we can write the bubble part of the solution as

UpT = Lj_ﬂl(f — Luh)|T VT € 77L (2,10)
Inserting (2.10) into the first equation in (2.5) we obtain:

find uy, € V}, such that

L(up,vp) + Z Lr(L7'(f — Lup)r,vn) = (fyon) Yoy €V, (2.11)
TeTh
which is a generalised Galerkin formulation in terms of the original finite element space V},.
The bubble solution (2.10) together with (2.11) form the residual-free bubble (RFB) method.

Remark. The local inversion of L, necessary for the computation of the bubbles, is a
task of the same complexity of the solution of the original problem (2.1). We remark that
the scope of the introduction and elimination of the bubble is to recover some information
from the subgrid scales, rather then resolve them. Hence, it should be expected that a rough
approximation of the bubbles may yield satisfactory results. We postpone the discussion of
this issue and of the implementation of the RFB method until the end of this chapter.
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2.2 Alternative definition of the method

An interesting development (cf. [20]) is the proof of the equivalence of the residual-free bubble
method with the variational multiscale method (see [62], [64], [65] and [52]). The latter consists
of considering the given problem as decomposed into a problem on a coarse scale, the original
finite element mesh, and a problem on a fine scale (the subgrid scale). The fine scale solution
is determined element—wise and the result is then substituted into the coarse scale problem.
This method can be interpreted as a bubble method in which the local space of bubbles is the
whole of H}(T). In fact, it turns out that, the bubble method with By = H{(T) is equivalent
to the residual—free bubble method defined in the previous section. This is quite obvious since
we can still write the bubble part of the solution as in (2.10) and so the variational multiscale
approach recovers (2.11).

To see this in more detail, let us first re—define the RFB method as the method obtained
through the variational multiscale approach. We introduce the residual—free bubble space

Vrrp = Vi + B, (2.12)
where the set of bubbles is given by
B, = @ Hy(T). (2.13)
TET,

Notice that the space Vrrp admits the representation
Vrre = {v € V : v|ogr = vp|sr for some vy, € V},,VT € T, }. (2.14)

In other words, Vrrp is obtained as follows. To start with, a space of traces is defined as
the restriction of V}, onto the skeleton of the triangulation. Successively, Vrrp is defined by
considering all extensions in V' from such space of traces.

We then define the infinite—dimensional version of the RFB method as:
find « eV such that
RFB RFB (2.15)
ﬁ(uRFB,U) = (f,U) Yo € VRFB-

First off all, the formulation (2.15) is still locally residual-free. Indeed, the solution urrp
satisfies weakly

Lruprp = f|T VT € Tp. (2.16)

To show this, we only need to test in (2.15) with the function v € Vgrp defined as v, = ¢ €
C3°(T') and v = 0 outside T'. This gives (Lrurrp, ¢)r = (f, ¢)r and we thus conclude (2.16)
since ¢ is arbitrarily chosen in C§°(T).

Let urpp|T = up + up be a possible decomposition of ugpp according to (2.12). Recalling
(2.16), we have that wy, is given by

uplr = L' (f — Lup)lr ineach T € T, (2.17)
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In other words, u; belongs to the finite—dimensional set of bubbles Eh defined in the previous
section. We have just proved that urrp belongs to

‘N/RFB =V, ® Eh.

Further, ugrrp coincides with the solution of the finite-dimensional problem

find @ Y such that
{ RFB RFB (2.18)

L(igpp,v) = (f,v) Yo € Vars,

which is nothing else but (2.4).

The new interpretation of the method as an infinite-dimensional Galerkin formulation is
rather appealing since it clarifies its approximation properties.

Before focusing on the numerical analysis of the method, let us introduce the following
generalisation which will become useful later on.

2.2.1 The general augmented space framework

Let X be the skeleton of our partition 7, i.e. the union of the boundaries of all elements in
Th, and let ® be the space of traces of V on X.

A general augmented subspace is defined by considering all the extensions onto () from a
finite-dimensional subspace of ®. That is, given a subspace @, C @ of finite dimension, we
define the space

Vi, = {UEV N/ E‘I)h}.
The augmented space formulation is obtained by restricting (2.2) to Vg:

find u, € V, such that
(2.19)

L(tg,vq) = (f,v4) Y, € V.
Existence and uniqueness are ensured by the coercivity of the bilinear functional L.
By definition, the augmented space V, always contains as a subspace the residual-free
bubble space By, as defined in (2.13). Moreover, the RFB space is a special case of V, obtained
from the above general formulation simply by choosing ®; as the space spanned by the traces

of Vh.
We can also identify a second subspace V;, which depends on the bilinear form £:

Vii={v eV, : L(v,v) =0 VYu, € By}, (2.20)
and observe that we have the splitting

Vo=V, @ By, (2.21)
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In the special case in which V, is equal to Vgrp, we also have, by definition,
Vo =Verre = V), + By,.

Since V}, and V} are not equal, the two characterisations of the RFB space are different. Thus,
the augmented space formulation naturally gives a new interpretation to the RFB method.
Indeed, the solution u, of (2.19) can be characterised as follows (see [25]).

Theorem 2.2.1 Let u, be the unique solution of (2.19). Then, its decomposition according to

(2.21) is given by ug = u; + u{ where u{: is the unique solution in By of

E(UIJ:,U()) = (f7vb) vvb € Bh7 (222)
and u; can be characterised as the unique solution in V; of
Llug,v) + L(uf, o) = (for) Vo € W, (2:23)

Proof. The existence of unique solutions to problems (2.22) and (2.23) is ensured by the
coercivity of £. Let u, = u; + up be the unique decomposition of u, according to (2.21).
Testing in (2.19) with v, = v, € By, and using the definition (2.20) we have

(fa Q)b) = ‘E(U’aa Q)b) = ﬁ(ula Q)b) + E(U’b’ Ub) = E(U’b’ Ub)a
that is, up = u,{ Finally, testing in (2.19) with v, = v; € V}, we see that wu; satisfies (2.23). O

Remark. The bubble equation (2.22), i.e. the equation obtained from the augmented space
formulation by testing in the bubble space, has the appealing property of being independent
of u;. Moreover the two equations (2.22) and (2.23) decouple if £ is a symmetric (bilinear)
functional, since in this case E(u{:, v) = L(vy, u,{) = 0 by (2.20).

2.3 Convergence results

The a priori error analysis of the RFB method (2.15) for the solution of a non—self-adjoint
version of (2.1) was performed by Brezzi et al. [28]. We report here the main result of that

paper.
We assume that the second—order linear elliptic operator L is of the form

L=eD+A (2.24)
where
_ "0 ow e ow
D’LU:—Z]Z:18—:L‘J (dzj(lﬂ)a—:m) ) Aw:Zaz(x)a—xz

Moreover we assume that:
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e D is symmetric and normalised to one, i.e. for almost every z in 2, the n X n matrix
(dij(x)) is symmetric and positive definite, with smallest eigenvalue > ¢ > 0 and largest
eigenvalue < 1. Hence, with V' = H}(2), the associated bilinear functional a satisfies:

d(v,v) > 5|v|%{1(9) Yo eV,
|[d(w, v)| < [wlg@)lvlm@) Yw,veV;

e for almost every z € (Q, the n-component vector (a;(x)) has Euclidean norm < +, with
v > 0 independent of . We finally assume that the associated bilinear functional is

skew—symmetric, hence:

la(w,v)| < ylwlpo)llvllr.@ Yw e H(Q), Yo € Ly(Q),

a(w,v) = —a(v,w) Yw,v € V.

Skew—symmetry is assured, for instance, by requiring that the vector field a = (aq,...,a,) is
divergence—free on (2 in the sense of distributions.
In this way, it follows that the bilinear form associated with the operator L, namely

L(w,v) = ed(w,v) + a(w, v) Yw,v €V,
satisfies

L(v,v) > ed|v %{1(9) Yo eV,

|L(w,v)| < Clwlg)lvlm@ Yw,veV.

Thus, by the Lax-Milgram lemma, the variational problem associated with (2.1),

find u € V such that
(2.25)

L(u,v) = (f,v) Yo eV,

has a unique solution in V.

We then consider the RFB approximation of (2.25) on affine-equivalent finite element
methods (the authors of [28] dealt with triangular elements, but the extension of their analysis
to, for example, parallelepipedal elements is only a notational matter).

Consider a conforming and shape regular family of partitions {7}, of @ C R”, i.e. with
the property that

1. Conformity: Any two elements in 7}, either have a common face of dimension < n or
they do not intersect at all;

2. Shape regqularity: For any element, the ratio of the largest circumscribed sphere to that
of the smallest inscribed sphere is bounded above by a constant p which does not depend
on the element and on the mesh parameter h.
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Moreover, we assume that any T' € T, is affine—equivalent to the n—dimensional unit simplex
or unit hypercube through an affine map

Fr(d) = M# +t,

where M is an invertible n X n matrix and t is a vector in R”.
From now on, we denote by Pj the space of algebraic polynomials of degree < k, i.e.

Pr = p:R”%R:p:an:co‘ , (2.26)
la|<k

and by Oy the space of algebraic polynomials of degree < k with respect to each variable, i.e.

Qr=<Rq:R"=>R:q= Z cax® 3, (2.27)
0<a; <k
where a = {a,...,a,} € N represents a multi-index and || = 37 | ;. We set

VrrB = {U eV: (1)|T o FT)|é € Pk|é
for each (n — 1)—dimensional face é of T and any element T' € 77L} (2.28)

As we have seen in the previous sections, Vgrpp = V}, + By, where By, is given by (2.13) and V},
is the standard conforming finite element space

€ Py if T is a simplex
VvV, = HE(Q):{ Pl ’ :
h {Uh € Hy() { wp|, © Fr € Q, if T is a parallelepiped

The RFB finite element discretisation of (2.25) is given, as before, by (2.15).
The following is the main result in [28].

Theorem 2.3.1 Let u and urpp be the solutions of (2.25) and (2.15), respectively. Assuming
that w € HETL(Q) N HL(Q), there exists a positive constant 3* = (3*(u, k), independent of h, §,
v and €, such that

1/2

Z (5h2Tr + 'YTh%“TH) |U|§{r+1(w(T)) 5 (2.29)
TET

s

e u — uprplmg) <

where 0 < r < k. Here w(T) denotes the patch of elements consisting of T and its immediate
neighbours.

1/2

In [28], in order to clarify the strength of the norm £"/*|u —ugrrp| 1 (q), the following result

is shown.
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Theorem 2.3.2 Let u and ugpp be the solutions of (2.25) and (2.15), respectively. Then,
| A(u — URFB)HE < delu — uRFBﬁt[l(Q), (2.30)

where

1
w2 =" — ol x oy
T T

and X (00, T) is the fractional-order Besov space f}é{;o(T) = (Lo(T), H} (T))1/2 o

Remark. Besov spaces are fractional order Banach spaces obtained through the real
method of interpolation applied to the Sobolev spaces W*P see Adams and Fournier [3].

Remark. The norm || - ||« can be thought of as a broken norm on a space with negative—
order 1/2. Indeed, there exist two positive constants 51 = (1 (p, k), and B2 = [a(u, k) inde-
pendent of T', such that

1/2

hr

Bullvll. < (Z —HUH%Z(T)> < Bl (2.31)
T T

for each v in V},. Thus, the right—hand side of (2.29) bounds also the left—hand side of (2.30).

In particular, a control on the Ly—norm of the streamline derivative is implied by the theorem.

Actually, as mentioned in [24], £/

|ul1,0, where u is solution of a general problem with
smooth data, is the strongest norm of v which can be expected to remain bounded independent

of € in the limit € — 0.

2.4 Steady-state convection—diffusion

The residual-free bubble method was first introduced for the solution of b.v.p.’s for the linear
steady—state convection—diffusion equation

Lu=—-eAu+a-Vu=f in Q, (2.32)

where € is a positive parameter and a is a continuously differentiable field. This is also the
problem on which this work is mainly focused on.

When ¢ is small w.r.t. a (convection-dominated regime), the solution of (2.32) may exhibit
sharp layers, i.e. narrow regions where the solution and its derivatives change very rapidly
(see Appendix A.1 for the definition of boundary and internal layer thicknesses). Classical
numerical techniques, like Galerkin finite element methods as well as central and upwind finite
difference methods, are globally unstable or inaccurate when the layer thickness is smaller then
the scale of the discretisation, that is, when the mesh used does not resolve the small scales of
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the problem (in this case, the boundary and internal layers). This concept is made precise by
the definition of the mesh Péclet number

_ llallco,rhr

P
er 2e ’

which measures if the numerical approximation is convection—dominated. Typically, the Galerkin

finite element solution presents unphysical, maximum—principle-violating oscillations when
Per > 1 for elements T' contained in the subdomains of Q which surround the layers.

2.4.1 Classical stabilised methods

Classical stabilised finite element methods achieve the double goal of stability and accuracy in
the solution of (2.32) in both the convection—dominated and diffusion-dominated regimes, by
modifying the bilinear form £. The Galerkin formulation, which reads,

findup, € Vi : L(up,vn) = (f,vn) Vo, € Vi,

is modified into a generalised Galerkin formulation by introducing a stabilisation term designed
to improve the stability of the method without destroying consistency. In particular, this can be
achieved by introducing a discrete diffusion operator associated with the streamline direction
(streamline—diffusion).

The three streamline-diffusion (SD) stabilised methods that have been most frequently
studied in the literature add the following term to the left-hand side of the standard Galerkin
formulation:

e Streamline Upwind/Petrov-Galerkin (SUPG) stabilisation:

S = Z TT/ (—eAup +a-Vu, — f)(a-Vuy) de (2.33)
TeT, T

e Galerkin/Least-Squares (GALS) stabilisation:

S = Z TT/ (—eAup, +a-Vuy — f) (—eAv, + a - Vo) de (2.34)
TET, r

e Douglas-Wang/Galerkin (DWG) stabilisation:

S =— Z TT/ (—EA’LLh +a- Vuh — f) (—EAUh —a- Vvh,) da’;7 (235)
TET;, T

where 77 is a user—chosen parameter, called the SD-parameter.
All these methods can be interpreted as Petrov—Galerkin methods. Notice that, for linear
or bilinear finite elements Auy |7 = 0 and Awvy|7 = 0 for every T' € Tp, so the three choices give
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rise to the same method which is referred to as the streamline diffusion finite element method
(SDFEM).

In general the SD—parameter depends both on the mesh size and on the mesh Péclet
number. A typical result for the SUPG method, taken from [82], is the following.

Under appropriate assumptions, the SUPG method with

Tohy  if Pep > 1 (convection-dominated case) (2.36)
T = :
T Tlh% /e if Per <1 (diffusion-dominated case),
satisfies the global error estimate
llu = unlllsp < € (/2 + /) B¥Julusa, (2.37)
where the SD-norm is defined as
1/2
[olllsp = [ elolf + Y mrlla- Vol§r
TeTh

The error bound (2.37) is optimal. A bound on the Ly—norm error of the SUPG method can be
added in the presence of a reaction term, although this turns out to be 1/2—order suboptimal:
a price has to be paid for improving the stability of the method. This deficiency is not due
to an incorrect choice of the SD—parameter. Indeed, it was shown by Zhou [96] through the
a priori error analysis of the method that on certain meshes the error bound (2.37) and the
Lo—morm error bound are sharp. The same is true of the RFB method which has the same
order of convergence as SDFEM, cf. the error bound (2.29).

The definition of 77 given by (2.36) states that, where the problem is convection-dominated,
the SD—parameter must be proportional to the element size hp. Still the problem of identifying
an optimal value of 7, in the sense of providing a sharp, non-oscillatory approximation in the
layers, is left open. Indeed, the value for 7y and 71 is not implied by the a priori analysis.

The difficulty encountered with the problem of parameter identification may be seen as a
consequence of the lack of physical justification for the stabilised method based on the notion
of relevant scales.

Indeed, one of the reasons for the success of two-level, or subgrid scale, methods such
as the variational multiscale method (or local Green’s function approach, see [62]) and the
residual—free bubble method introduced in [29], is that they can provide the required theoretical
foundation to classical stabilised techniques.

For each of the methods (2.33), (2.34) and (2.35) one can find in the literature an equivalence
with some subgrid scale model, at least for low—order finite element methods.

The formal equivalence between bubble methods and the SUPG, DWG and GALS is dis-
cussed by Brezzi et al. in [18] and [29] and by Baiocchi et al. in [10]. Notably, Baiocchi et al.,
in their article on ‘Virtual Bubbles’ [10], show that with a suitable choice of the space Br, it
is possible to choose the bilinear functional corresponding to Lr from a vast class of bilinear
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functionals and, in particular, to recreate the stabilisation terms of all the known stabilisation
methods. Another notable example is given by Hughes in [62] where a theoretically optimal
value for the SD—parameter of the DWG method is obtained through the use of the variational
multiscale approach.

2.4.2 A special case

Let us focus, for instance, on the equivalence between the SDFEM and the RFB method
proved by Brezzi and Russo [29]. This equivalence is limited to linear finite elements under
the assumption of piecewise constant coefficients w.r.t. the partition 7.

We consider the definition of the RFB method as a generalised Galerkin formulation (2.11).
By applying Green’s formula to the stabilisation term, this can be written

find uy, € V}, such that

Llun,vn) + > (Lp"(f = Lup)le, L*op)r = (fvn)  Vop €V,
TeT

(2.38)

where L* is the formal adjoint of L.

Let L be the convection—diffusion operator (2.32) and assume that a and f are piecewise
constant over 7, and that V}, is the space of piecewise linear functions in H&(Q), defined over
elements T" of 7. In this case, on every element T' € T we have that

f—Lup=f—(—eAup +a-Vu,) = f —a- Vuy,

is constant. Hence, by the definition (2.9) the local bubble space By is one-dimensional and
we may define as basis for Br the function by € H{(T) which solves the problem

—eAbr+a-Vbr =1 inT,
(2.39)

br =0 on OT.
In this way we have that Lrbr =1, by = L;ll, and hence
L' (f = Lup)|r = (f — @ - Vup)|7br,
so the stabilisation term in (2.38) becomes

(L7 (f = Lup)lr, L*op) g = —=(f — @ Vup)|7(a - vUh)lT/TbT d

_ fT br de

T /T(a-Vuh—f)(a-Vvh)da:

This is the stabilisation term of the SDFEM with a particular choice of the stabilisation
parameter 77, hence the two methods are equivalent. The advantage of the RFB approach is
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that the stabilisation parameter is produced by the method rather than by ad hoc tuning. In
this case,

_ fTbT dx

Y

(2.40)

The equivalence between SDFEM and RFB is limited to the case of linear elements. For
instance it does not hold for bilinear elements. Indeed in this case, although the stability
properties of the two methods are comparable (see [51]), they do not coincide. This fact was
proved by Brezzi et al. [22] through a standard stability argument. By considering the limit
of vanishing viscosity and testing in the RFB stabilisation term with the bilinear component
of the solution up, we get (cf. [22]):

1

2
— up(xg) —up(xzp)]”a-ndl,
ol /. [on(w0) —un @)

where xp is the point on the inflow part 07— of the boundary of T which is aligned with the
point g on the outflow part 9T of 9T in the streamline direction. From this expression we
see that the effect of the residual—free bubbles on the formulation is to add stability thorugh
the ‘jump’ of the bilinear solution in the streamline direction.

2.5 RFB and upscaling
We survey the use of the RFB method for the solution of
-V - (d(x)Vu) = f inQ, (2.41)

together with homogeneous Dirichlet boundary conditions. The conductivity tensor d(x) =
(dij(x))i; is assumed to be symmetric and positive definite.

The interest and difficulty in the solution of (2.41) arises when the tensor d, which models
the properties of the underlying medium, is characterised by a multiple—scale structure. This
is often the case of interest when (2.41) is used to model physical phenomena like single
phase steady flow in porous media and steady state heat or electrical conduction in composite
materials.

A successful direct numerical solution typically requires that all the scales embedded in the
problem are resolved, i.e. that the size of the numerical mesh is comparable with the finest
scale of the problem.

Often, though, the quantities of interest are only some macroscopic features (e.g., the
global average) of the solution. This fact leads to the development of methods which are able
to capture the fine scale effects on the coarse, macroscopic scale without necessarily resolving
all the fine scales.

A classical example is given by the homogenization theory, which deals with problems with
oscillatory coefficients (the reference book is by Bensoussan, Lions and Papanicolau [13] and,
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more recently, Cioranescu and Donato [34]). It is assumed that d = d(x/e), where ¢ is a small
parameter (small with respect to the dimensions of ) and that d is periodic with respect to
the fast variable y = x/e. Under appropriate regularity assumptions on d, it is proven that
the solution u to (2.41) admits an asymptotic expansion of the form

U($,y) = UO(m) + 6U1($, y) + 0(62)7
where wu is the solution of the homogenized equation
=V - (d*Vuy) = f in €,

and d* is the symmetric and positive definite (constant) effective coefficient determined by
solving a problem similar to (2.41). Moreover, u converges to ug as ¢ — 0 weakly in H} ()
(and point—wise under stronger smoothness conditions).

Obtaining the effective coefficient d* is not an easy task in general, an exception being
given by the one-dimensional problem discussed below.

Numerical upscaling methods seek to approximate d* to successively obtain ug as an ap-
proximation of u. We say that such methods are two-level procedures: at the fine level the
effects of the fine scales on the macroscopic scales is incorporated in d*, while at the coarse
level the macroscopic features of the solution are approximated by solving for wuy.

The RFB method is also a two level procedure (static condensation of the bubble followed
by solution on the coarse grid) and, as it turns out, it is an upscaling method. As we show
below, this can be seen very clearly when the RFB method is applied to a one-dimensional
problem. For the interpretation of RFB as an upscaling technique in many spacial dimensions
see, instead, Sangalli [87].

We refer to Section 2.1 for the definition of the RFB method. As usual we have the
characterisation of the RFB space

VerB = Vi, © By,

(let us just assume, here, that the two subspaces are in direct sum).
Given the bilinear form

ou Ov

associated to (2.41), we have a two level procedure by testing in V}, and By, separately:
find uppp = up + up € Vi, @& By, such that
L(up,vp) + L(up,vn) = (f,vn) Yoy, € Vp, (2.42)
L(up,vp) + L(up,vp) = (f,vp) Yo, € V.

We then (formally) perform static condensation of the bubble by solving the bubble equation
in (2.42) locally:

up|lr = L3 (f — Lug) |7,
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where L represents the linear differential operator associated with L.
Finally, after substitution of u; into the first equation in (2.42), we obtain the ‘coarse grid’
RFB formulation: find u; € V}, such that

Llun,on) = > (Lp"(Lup), Lop)p = (foon) = > (L7 f,Lvw) . Yon € Vi, (243)
TeTh TeT,

since L is self-adjoint.
In practice the static condensation is carried out as follows. Let {¢; };V:Tl be the set of local

basis functions for V}, in T, and write up|r = Z;VZTI Ujpj. We have

Nt
LM (L)l = Ly ZULmT ZUL (Lojlr) =Y Uby, (244)

where, as suggested in the last equality, b; is defined element-wise as the solution of the
boundary value problem

{ ~V - (dVb)) = -V - (dVy;) inT, (2.45)

b =0 onOT.
We can proceed in a similar fashion for the bubble term on the right-hand side of (2.43)

realizing that to carry out the static condensation, we also need to solve on every element 7’
the problem

-V - (dVby)=f inT,
d (2.46)
bf =0 on OT.
Over all, the set of functions {b,...,by;,bs} form a local basis for a finite-dimensional sub-

space of the space of bubbles Bj, and we have uy|7 = by — Z;VZTI U;b

As in the case of convection—diffusion problems, we are left with a generalised Galerkin
formulation for the FEM space V. Only the interpretation of the bubble terms in (2.43)
changes: this time they are thought as representing the effect of the fine scales onto the
macroscopic scale. In practice this difference is crucial: the more accurately the bubble terms
are computed, the more details will be included and, as a consequence, the more accurate up,
will be as an approximation of the coarse scale solution. Interpreting the RFB method as
an upscaling procedure, we say that the accuracy put into the computation of the bubbles
determines the effective coefficient of the method.

2.5.1 A one—dimensional example

For relatively simple problems, like one-dimensional problems or when a(x) is separable in
space, we can easily obtain analytically the subgrid functions needed by the two—level procedure
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(2.42). This allows us to analyse the RFB method without worrying about the resolution at
the subgrid level.

To start with, let us consider the analogue of problem (2.41) on the one-dimensional domain
Q= (0,1), that is

{ — (de(@)ul (@) = f(&) i (0,1), (2.47)

u(0) = u(1) =0,

where d.(z) is an abbreviation for d(x/¢) and d(z) is a continuous 1-periodic function, € is a
small parameter and the forcing term f € Ly(0,1).
In this case,

1
L(u,v) :/0 d.(z)u' ()0 (z)dx,

and we assume that d.(z) > 0 to ensure that £ is elliptic.
The homogenized problem associated to (2.47) is simply given by (see, again, [13])

—(1/m(1/d))ul = f. (2.48)

where

Lodt
m(l/d):/o ot

We consider linear finite element discretisations of (2.47) over partitions {xj}évzl of (0,1)
into non-overlapping sub-intervals T} = [z, xj41].

The solutions of the bubble problems (2.45) are in this case trivially given by the two local
bubbles

[yt

j 1
I Tt

bi(z) = L (—(w —zj) + (@41 — 2;)

d b =1-b .
P— ) and  bj41(x) i, ()

Having solved the subgrid problems, we are ready to compute the stiffness matrix associated
with (2.42). The RFB method (2.42) takes the following algebraic form:

Assume that the partition is uniform and that every sub-—interval is of length h. Then,
since we are considering linear finite elements, the standard Galerkin term is simply given by

1
D = —tridiag —/ d.(z) dx,/ de(x) dx—l—/ de(z) dm,—/
h T 4 T 4 ; T,

J J J

d.(x) dx) ,
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while the bubble term becomes

1 © 1 / / / !
B = Etrldlag (/Tj(ldE bj_1)(z) dz, /Tj(ldE b;)(z) dx — /Tng b;) () dw,/ngE bj41)(x) dw) .

We notice that the entries of D depend on 1/h times the average of the coefficient d over an
element. In particular, if h is a multiple of ¢, we have that D becomes the discrete Laplace op-
erator w.r.t. the constant diffusion m( fo z)dz. In other words, the standard Galerkin
method picks-up the wrong homogenlzed operator

d2

On the other hand, the entries of B are of the form

/T (d- b)) (2) da = /T

1 1
——+— d.(z)dx
] ( Dy o
ijE h
- "

h

Ty 4. ()

Thus, summing up the contributions of D and B we get

- -1 1 1 -1
D + B = tridiag ( T -|- TR o ) )
fT 1de( fT lds Tjd.(xz) JTjd-(x)

This time, when A is a multiple of ¢, we see that the RFB method coincides with the
Galerkin linear FEM applied to the correct homogenized operator
2

~(1/m(1/d)) oy

(Notice the analogy with convection—diffusion b.v.p’s for which static condensation of the
bubble leads to a centered difference approximation of the regularized operator including the
numerical viscosity term.)

Hence, in one—-dimension, the RFB method is a numerical upscaling method in which the
effective coefficient is computed exactly when the mesh size is a multiple of £ (when this is not
the case, it is easy to see that the difference between the effective coefficient and the coefficient
given by RFB is of order O(¢/h)). For the interpretation of RFB as an upscaling technique in
many spatial dimensions see Sangalli [87].

The effect of upscaling can be seen in the following example. We solve (2.47) in © = (0, 1)
with d = 1/(2 + 1.8sin(27x/¢)), € = 0.04 and f = —1. The exact solution and a standard
Galerkin solution can be seen in the top-left plot in Figure 2.1: although the mesh used is
almost fine enough to resolve the oscillatory behaviour, the Galerkin approximation fails to
capture the coarse scale behaviour of the exact solution. On the other hand the exact solution
is very well approximated by the RFB method. Indeed, the RFB solution corresponds to the
interpolant of u from Vgrprp, hence the RFB method is nodally exact in one-dimension.
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Figure 2.1: Solution of (2.41) in Q@ = (0,1) with d = 1/(2 + 1.8sin(27z/¢c)), ¢ = 0.04 and
f=—1.

2.5.2 The MFEM method

A typical difficulty in numerical upscaling is the ‘resonance’ effect between the mesh size and
the scales of the continuous problem [59].

We can analyse the effect of resonance in the RFB method by exploiting the equivalence
with the MFEM (multiscale finite element method) formulated by Hou and Wu in [59] and
analysed by Hou, Wu and Cai in [60].

The equivalence between the two methods was shown by Brezzi and Marini [26] and is easily
explained by using the general augmented space formulation [25] which we have described in
Section 2.2.1. We have seen that the RFB finite element space Vrrp admits the alternative
splitting

Vrre = V| ® By,
where

Vi:={v € Vrrp : L(v;,m) =0 Vo, € By}. (2.49)
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Moreover, with such splitting, the RFB solution is given by urrp = u; + u{: where (cf. Theo-

rem 2.2.1) u{: is the unique solution of

L(uf,v) = (f,m) Yoy € By, (2.50)
and u; is characterised as the unique solution of

L(up,v) = (f,v) Yo €V, (2.51)

Hence, the two problems defining u{: and u; decouple (as we remarked in Section 2.2.1, this
happens only when £ is symmetric).

Notice that we could drop u{: and simply consider the method given by the numerical
solution of (2.51). Such a ‘reduced’ RFB method coincides with the MFEM of Hou et al. [59],
[60].

The philosophy of the MFEM is to use the usual FEM formulation but employing ad hoc
basis functions designed to capture the small-scale information within each element. The basis
functions are defined as local solutions of the original p.d.e. but with zero forcing term, hence
they must be evaluated numerically using a subgrid.

The method works on axiparallel polygonal domains and is based on a linear or bilinear
FEM formulation.

Let zj,5 = 1,..., N be the nodes of the triangulation. The basis function associated with
xj is defined as the solution of the boundary value problem

—V - (dV;) =0 T, VTeT,
¢j(z;) =04 for any node x; that is a vertex of T, (2.52)

¢; linear on every edge of T'.

The standard form of the method is:

N

finduy ey = Z Uj(ﬁj such that
7=1
L(uvrem, $i) = (f,¢i))  Vi=1,...,N.

(2.53)

By definition, the set {¢; };VZI is a basis for the finite element space V;; hence (2.53) is equivalent
to (2.51). The equivalence can also be seen by comparing the basis functions of the RFB
and MFEM methods. Indeed, the homogeneous problem with non-homogeneous boundary
conditions (2.52), which gives the basis of the MFEM space, corresponds, through the bilinear
basis ¢;, to the non-homogeneous problem with homogeneous boundary conditions (2.45),
which gives the basis for the bubble space. That is, one can easily verify that ¢; = —b; + ;.

Under the hypothesis that d(x) is periodic with period ¢, the following convergence results
are proven in [60] using a standard FEM analysis:
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Theorem 2.5.1 Let u and upppy be the weak solutions of (2.41) and (2.53), respectively.
Then there exist constants Cy, C4, independent of h and e, such that

lu — uniremlloe < Co (R/€)* || fllo0; (2.54)

and

lu —umremllie < Ci(h/e) ] flloa- (2.55)

The above bounds are not sharp when h > e, which is the regime of practical interest. To
understand the properties of the method when h > €, a second asymptotic analysis is carried
out in [59] for the limit as ¢ — 0. This involves the use of the homogenisation theory of
equation (2.41) and is carried out in order to prove that, in the limit as ¢ — 0, the MFEM
solution converges to the solution of the homogenised problem. This property is not shared
by the standard Galerkin FEM, as we have verified with the one-dimensional example above.
The result proved in [59] is the following.

Theorem 2.5.2 Let u and uy, be the weak solutions of (2.41) and (2.53), respectively. Then
there exist constants C1 and Co, independent of h and e, such that

lu—wnrparle < Cibl|flloq + Cale/h)>. (2.56)
Moreover, there exist constants C1, Co and C3 independent of h and €, such that
lu —unrermllon < Cih? || f o0 + Coe + Cs (¢/h). (2.57)

Similar bounds are proven for the full RFB formulation by Sangalli [87].

The effect of resonance is expressed by the last term on the right—hand side of the error
bounds (2.56) and (2.57) and can be appreciated in the loglog plots in Figure 2.2.

It is clear that, if the problem contains many scales, resonance can completely spoil con-
vergence.

For this reason in [59] a nonconforming version of the MFEM method based on an over—
sampling technique is also developed. This departs from the general augmented space formu-
lation, and hence the analogy with the RFB method is also lost. Sangalli [87] has instead
obtained an improved RFB method by considering macro—bubbles, i.e. bubbles with support
on patches of elements. The advantage of the new method is that the resonance is in terms of
the ratio ¢/H, where H is the diameter of the patch.

2.6 Computation of the bubbles

The implementation of the RFB method requires the solution of the local problems (2.8)
(otherwise the implementation is straight—forward by considering the method in its generalised
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Figure 2.2: Lo—norm error of the MFEM method. The one—dimensional problem (left plot) is
the one specified in Figure 2.1. As for the two-dimensional problem (right plot), € = (0, 1)2,
d=1/(2+1.8sin(2r(z—y)/e)), e = 0.04 and f = —1/2((62> —1)(y* —y?) + (6y% —1)(z* — 2?)).
In order to ensure that the subgrid discretisation error is of higher order, a 32 x 32 sub—grid
has been used for the two—dimensional computations.

Galerkin formulation (2.11)). More precisely, we need to calculate, for each T' € T}, a basis of
the local bubble space Br given by (2.9).

As we have seen in Section 2.5, a basis for By can be picked as follows. Let {¢; };V:TI be the
local shape functions of the finite element space V}, associated with a generic element 7. We
define, for j = 1,..., N, the bubble b; € H}(T) as the solution of the problem

Lbj = —Lyp; inT,
bj =0 on JT,

(2.58)

and define by € H}(T) as the solution of the problem

Lby=f inT,
bf =0 on OT.

(2.59)

The local space of residual—free bubbles Bt is then given by
Br =span {b,...,bn;,bs}.

In some cases, the number of bubbles that need to be computed can be reduced since by, ..., by,
and by need not be linearly independent. For instance, as we have seen, Br is one-dimensional
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for piecewise linear elements and piecewise constant coefficients problems (in the case of bilinear
elements the dimension of By turns out to be equal to 2).

At any rate the bubbles cannot be computed exactly, and we have no choice but to employ
approximate solutions. These may be obtained, for instance, by introducing a subgrid on each
T € Ty, and the question then arises as to how accurate the subgrid computations need to be
in order to maintain the accuracy of the method.

An interesting result in this direction has been obtained for convection—diffusion problems
by Brezzi and Marini [25], considering the case of linear FEs. Under certain assumptions on
the approximability properties of the local problems, it is shown that the error bound (2.29)
still holds as long as some nodes of the subgrid used to solve (2.39) are located inside the
boundary layer of the local problem.

This suggests the use of very crude Shishkin-type meshes (see Appendix A.2); in fact, this
is the method of choice for the computations included in the present thesis. In general any
computationally cheap and stable numerical method can be employed; see [29], [50], [48], [23],
[27] and [88] for some examples and ideas.

From the result of Brezzi and Marini mentioned above, we deduce that the following general
rules should dictate the choice of the approximation of the bubbles:

1. the bubbles need not be computed with high accuracy;

2. the approximate bubbles have to ‘see’ the fine scale that needs to be captured by the
method.

Finally, since the bubble problems are completely independent of each other, it is obvious
that

3. the bubbles can be computed in parallel.

A nice example highlighting the importance of this last item is given by the upscaling
problems considered in the previous section. For such problems, if the subgrid scales are
present globally, the (sequential) RFB method would not be faster to compute than the more
accurate standard Galerkin method using the subgrids as patches of the global partition.
Hence the RFB method should be interpreted as a way of parallelising the Galerkin method
(see also [59], [60]).

To clarify the first two items in our list, let us consider again the instructive example of
Section 2.4.2. We have seen that the algorithm only requires the computation of the implied
SD-parameter 7. This, in turn, only depends on the elemental integral mean value of the
bubble. Hence, a ‘good’ bubble is simply one with the correct average.

In this sense, if the Péclet number is large, a good approximation to b7 may be given by
the solution by to the reduced (hyperbolic) problem

(2.60)

a-Vbpr=1 inT,
bT =0 ondT_.
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As in [29], in the case of n = 2, we define h, to be the length of the longest segment
parallel to @), and contained in 7. The solution br of the reduced problem (2.60) is simply
the pyramid of base T" and height hq /|a|. Thus,

_frbre [rbrde l(lTha> ha -

“ 3" al) T 3a] T

Y GG

The value 77 is straight—forward to compute and it gives a good approximation of 77 in the
convection—dominated regime; see the discussion on SD—parameters in the next chapter. The
above idea is due to Brezzi and Russo [29] and is part of the adaptive algorithm considered in
Chapter 5.



Chapter 3

The RFB method on anisotropic
partitions

We present the error analysis of the RFB method applied to the solution of boundary value
problems for a linear elliptic convection—diffusion equation on anisotropic meshes.

A motivation for this work is based on the fact that not much is known about the coupling
of stabilisation methods and anisotropic mesh refinement for the solution of problems with
thin layers. Relatively little is known, for example, about the problem of the optimal choice
of the SD—parameter in the SUPG method on anisotropic meshes, although there have been
interesting developments recently, see [73] and the references therein. Typically the approach
is to derive the SD-parameter through a priori analysis. In most cases this leads to choosing
the SD—parameter to be proportional to the height of the element with respect to its diameter,
see, e.g., [5], [67] and [73]. Notably, the authors of [73] have been able to refine their choice by
gaining inspiration from the SD-parameter implied by the RFB method. Indeed, in [72] the
diameter of the element in the direction of convection is considered (see the end of last chapter).
In Section 3.6 we better estimate the magnitude of the stabilisation parameter implied by the
RFB method and propose, accordingly, a new choice of the SD—parameter.

The technique used here to obtain an a priori error bound for the RFB method is different
from the one employed by Brezzi, Marini and Siili [28] to prove Theorem 2.3.1. Indeed, we
will follow the approach taken by Sangalli [85] to subsequently re—derive the results presented
in [28] without making use of the Besov space setting. The key idea of Sangalli’s approach
is to exploit the approximation properties of the augmented space Vrrp. To do so, Sangalli
explicitly constructs a projector from H' onto the residual-free bubble space in a certain e
weighted H'! norm (¢ being the diffusion coefficient). A similar approach is followed by Risch
in [81].

33
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3.1 Residual-Free Bubble discretisation on anisotropic trian-
gulations

Let ©Q be a bounded open axiparallel polygonal domain in R?. We consider the elliptic

boundary—value problem
—eAu+a-Vu=f in(,
(3.1)

u=20 on 012,

where ¢ is a positive parameter, a is a continuously differentiable field on € and f belongs to
L?(2). Finally, we assume that

div(a) <0 in Q. (3.2)

On V = H{(R), we define the bilinear functional
L(w,v) = 5/ Vw - Vudr + / (a-Vw)vdz. (3.3)
Q Q

The variational formulation of (3.1) reads

find u € V such that
(3.4)

L(u,v) = (f,v) Vv eV.

The bilinear form L(-,-) is coercive in V since, for every v € V, using the first Green formula

and (3.2), we have
02
L(v,v) = 5/ |Vo|2dz + / a-V (—) dx
Q Q 2

2
= 5/ Vo|2dz — / div(a) % dz > elo[2 . (3.5)
Q Q 2 ’

Thus, since | - |1,0 is a norm on V, by the Lax-Milgram lemma, (3.4) has a unique solution.
(For a more general existence and uniqueness result, see [54], Theorem 8.6).

As in the previous chapter, for a fixed integer k > 1, we denote by Pj. the space of algebraic
polynomials in R? of degree < k and by Q. the space of algebraic polynomials in R? of degree
< k with respect to each variable; see the definitions (2.26) and (2.27), respectively.

We consider discretisations of (3.4) over conforming partitions 7, of € (i.e., any two ele-
ments either have a common edge or a common vertex, or they do not intersect at all) consisting
of affine—equivalent quadrilateral or triangular elements. Given a reference element f, for any
T € T, we shall denote by Fr : T — T the invertible affine transformation from T onto T'.
(See Section 3.3 for a generalisation to isoparametric finite elements.)
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The residual—free bubble space is defined as follows (cf. (2.14)):
VrrB = {U €V :v), € Py for each edge e of T'and any element T' € 77L} . (3.6)

The RFB-approximation of (3.4) is, by definition, its Galerkin approximation in the space
VrrB, which reads

find ugrrpp € Vrrp such that (3 7)
,C(URFB,U) = (f,U) Yo € VRFB- '
The space Vrpp is infinite-dimensional, admitting the representation
Vrrp = Vi + B, (3.8)

where, for rectangular elements
Vi, = {vy, € H}(Q) twpy, o Fr € Qp VT € Th},
while if the partition consists of triangles, then
Vi, = {vh € H&(Q) twp|, € P VT € E},

and

By = @ Hy(T).

TeT

Thus, Vrrp is the usual finite element space V;, augmented by the infinite-dimensional space
of bubbles By,.

We shall not assume that the partition 7 is shape regular, because we wish to allow
anisotropic local refinements where special features of the exact solution, such as, boundary
layers, are detected. Our only assumption will be that element edges are of at most the same
order of magnitude as the diffusion coefficient; more precisely, we assume the existence of a
positive constant ¢ < 1 such that

e < ch,, (3.9)

for all edges y; here h, represents the length of an edge. This is a reasonable assumption when
dealing with convection—-dominated problems. Moreover, it is clear that, if we can afford to
solve the problem on finer grids, we do not need to use a stabilised method.

For any element T' € Tj,, let At be its diameter. We denote by A; and Ay some characteristic
dimensions of a generic element T" € T, to be defined on a case-by—case basis, and use them
to group the elements according to the following rule (which defines the sub-partitions 7; and

T2):
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|
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Figure 3.1: An anisotropic mesh designed to deal with two exponential boundary layers.

1. TeTiif A\ <Xy
2. T € Toif Ao < Ay,

An admissible structured mesh and its sub—partitions are shown in Figure 3.1.

In conducting the local a priori error analysis, we shall distinguish between the sub-—
partitions. In Chapter 2 we have seen that Brezzi et al. in [28] have proven that, if the
mesh is shape regular and the solution u € H**(Q), the energy norm of the error in the RFB
solution satisfies

51/2|u o URFB|1,Q — ()(hk+l/2)7

this result being a consequence of the usual scaling properties (here h represents the charac-
teristic size of the partition). We would like to obtain the same order of convergence whenever
the partition is shape regular. But, since shape regularity is not assumed, we make use of
anisotropic approximation results to derive an a priori error bound in terms of appropriately

weighted norms of directional derivatives of the exact solution w.

3.2 A-priori error analysis: structured quadrilateral meshes

We start with the case of rectangular elements, leaving the treatment of more general trian-
gulations to subsequent sections.

In this case it is natural to define Ay = h; and Ao = hg, where h; and hy denote the
dimensions of the generic element T' € T in the x1 and z2 coordinate directions, respectively.
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3.2.1 Preliminary results

Let 7' = [—1,1]? be the master element. Given a function v € H'(T)), we indicate by o € H'(T)
the function associated to v through the affine transformation Fr, hence

v :=wvo Fr.

In this chapter we denote by +* = 3 — ¢ the complementary index to ¢ with respect to the set

{1,2).

It is easily seen that, for all v € H 1(T)

o[l = h1h2HUHUT7 (3.10)
‘ Ou " _ hi 8—1’ . =12 (3.11)
8371' 0,T 8:1:Z ij

We will also need some scaling properties for functions defined over edges of the elements
T € T,. The trace of functions belonging to the Hilbert space H*(T") and, more in general, the
Sobolev space W#P(T), is characterised as belonging to the so—called fractional order Sobolev
space WF=1/P2(9T). This can be defined using the real method of interpolation and, if p = 2,
coincides with the Besov space (of the same order) mentioned in Section 2.3, see, e.g., Adams
and Fournier [3].

The space W*P(9T), s > 0, can also be characterised in terms of an intrinsically defined
norm. For instance, for every s € (0,1), the norm and semi-norm of the Sobolev space of
fractional order H*(9T) is defined as

= Lol o + ) =W 4 oy}
or Jor |7 =yl

= {ollZor + 0120r )%,

v

(3.12)

where do denotes the 1-dimensional curve measure of 9T. This definition can be extended to
portions of 0T

The Trace Theorem (again, see, e.g., [3]) ensures that the trace of a function v € H*(T)
belongs to H*~1/2(9T') and that there exists a constant C' independent of v such that

(Trace Theorem) lollir /20 < Cllollr- (3.13)

For a summary of the definitions and results of functional analysis used here, see [80].
Let v be an edge of T' € 7j,. Scaling the Sobolev seminorm | - |, from 7" to T' we have

hy

1-2s
|2, = (7> 025 VveH(y), (3.14)

where, as before, h, = |y|. The scaling property (3.14) is used to prove the following anisotropic
trace inequalities which are refinements of the usual ones (see Section 4.3) valid for axiparallel
domains.
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Lemma 3.2.1 Let v € HY(T), where T is an an axiparallel rectangle in R? and let y; be an
edge of T parallel to the i-th axis. The following trace inequalities hold:

N

i=1,2 (3.15)

1
2 2
[v]l5, < e lollor + 21lvllo,r H”l‘i* 0,7

ha

1 hy
oBpor < € (o W+ 3 Boali + 32 ol ) 3.16)

where the constant C is independent of hy and ho.

Proof. The proof of (3.15) can be found, for instance, in [53]. To prove (3.16), we apply (3 14)
with s = 1/2 to scale from 0T to 8T, the Trace Theorem (3.13) to shift from dT to T and,
finally, we use (3.10) and (3.11) to scale back to T":

2 a2
|v|1/2,8T - |1)|1/2 T
< ||v||1/2 af

< Cll?;
~112 ~ 2 ~ 2
=0@wﬁ+w%mf+mahﬁ

1 hq ho
= ¢ (0l P ol + 22 e ) - ©

The error analysis is based on the following lemma which was proved by Sangalli in [85].

Lemma 3.2.2 Given a function wy € H1/2(af) and a real parameter t with 0 <t <1, there
exists w € HY(T) such that o = 1y on 0T and

£ 12 1 a 02 A 12 )
Hf? 7+l 7 < C (Eliol? 57+ o2 o7 ) (3.17)
where the constant C does not depend on t and .

We recall that Vrpp is an infinite-dimensional space; indeed the elements of Vrrp are all
the extensions to H&(Q) of a space of piecewise polynomials defined on the element boundaries.
It is this property that motivates the use of Lemma 3.2.2.

The error analysis is based on the construction of a projection operator onto Vrrp.

Let us focus on a single element T' € T;, by considering a function v € HY(T). To start
with, since the elements of Vrpp are piecewise polynomials on the boundary of T, it makes
sense to approximate the trace of v on 0T by using the restriction onto 0T of an interpolant
of v.

Let IIv be such an interpolant of v. We may complete the construction of an approximation

Prv of v into T by carefully choosing an appropriate extension of (IIxv), . into Vgrp. As we

lor
shall see, this is precisely where Lemma 3.2.2 comes into play.
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3.2.2 H'-projection error
Let
HYYT) := {v € LX(T) : vy, Vay, V3125 € L*(T)} .

We begin by defining a suitable interpolant from Qj of a generic function in H!(T'). This will
be the tensor-product H'-projection operator IIj, as has been defined in [53] (see also [91]) by
means of truncated Legendre expansions through the following definitions.

Definition 3.2.3 Let L,, denote the Legendre polynomial of degree n defined on I = (—1,1).
We define the Lo—projection operator

7+ Lo(I) — Pr(I)

by
k
Fro() = 3 anLn(@),
n=0
where
ap = 2n2—i— ! /Iv(x)Ln(:B)d:B.

Further, we define the H'-projection operator
g« H'(I) = Pi(1),

by setting, for any v € H'(I),

v () = /i g1 (v")(n)dn + v(-1), z € (—1,1).

The advantage of the above definition is that it can be easily extended to the multi—
dimensional setting by means of a tensor-product construction; this is achieved at the cost of
assuming some extra regularity.

Definition 3.2.4 Let T = (—1,1)2. We define the tensor-product projection operator

I : HYY(T) — Qu(T)

T . A1 A2
[y := 7t o, 2,

where 70", 7t,> denote the one-dimensional H'-projection operators from Definition 3.2.3 and

the superscripts x;, 1+ = 1,2, indicate the directions in which the one-dimensional projections
are applied.
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Let Fr be the affine mapping that gives T' € Tj, from T. The above definition is easily extended
to a generic axiparallel rectangle T" as follows.

Definition 3.2.5 Let T € T,. We define the tensor product projection operator
My : HYN(T) — Qi(T)
by setting, for any v € HY(T),
Mo := o o Frl.

Being of tensor—product type, the projection 1I; allows anisotropic error bounds. Furthermore,
it is better-behaved than the L?-projection operator when bounds on the derivatives of the
interpolation error are needed. The relevant properties of II; as interpolation operator are

summarised in the following lemma.

Lemma 3.2.6 Let v € HYY(T) where T is an axiparallel rectangle. If v € H™ 1 (T) with
1 < r <k then, for any s with 0 < s < r, the following error estimate holds:

hl 2542 h2 2542
o~ ol < @l ) ((7) oz ol + () ||a;:1v||%,T)

h 2 h: 2s
+ ®y(k,s — 1) min <§Z> (%) ||agscj8:vi”||%,T’

i,j=1,2
i#j

and, for any 1,7 =1,2, 1 # 7,
h' 2s h 2s
7
oo = o) < ®100) () 005 ol + atis = 1) () 108,000l

where

T(k—s+1)\"? o, (k
069 = (Frrery) + Bl =
M'k+s+1) kE(k+1)
and T is the Gamma function.
The proof of the interpolation error bounds stated in the above lemma has been given by
Georgoulis in [53] where such results are presented in a much more general setting.

3.2.3 Error bounds

We are now ready to complete the construction of the approximation operator in Vgrrp. Given
lop- Lhis is the
crucial step in the error analysis, in which the main task is to bound the quantity

v € HYY(T), our aim is to define Prv € Vzpp as a suitable extension of (ITv)

Ef(v) =elv — Profip+e v — Pro|l§ . (3.18)
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Thus, to obtain the correct error bound we shall need a projector onto Viyrp with respect to
the e-weighted H' norm 61/2| i+ e 12| llo,r- This in turn motivates our choice for Pruv.
Assume that T' € 7;, with i € {1,2}. To bound (3.18) we proceed as follows. Let Pt =

Prv o Fp. Using (3.10) and (3.11) we get

h. R R h* R N 671h*h ~ ~
Ef(v) = 5#“(“ — Ppt)s,. |12 7 + E#H(v — Ppd) |12 7+ #Hv — Ppo|l? -
Z* b 1/ b b
€ e\ 7!
< Chy- (h—iw — Pf@rif + (E) |6 — Pf@||§f> . (3.19)

As in [85], we choose Pz9, and so Prv, applying Lemma 3.2.2 to (0 — ﬁkﬁ)bf with

t=—.
h;

Notice that indeed we can make ¢t < 1 due to assumption (3.9).
Let wo = (0 — Hkﬁ)bf and let @ € H'(T) be the extension to 1y given by Lemma 3.2.2,
with respect to ¢t = ¢/h;. We define Pzt and, consequently, Prv, as follows:

b — Pt = 1b, (3.20)
Prv = Pgpi o Fy'. (3.21)

From (3.17) and (3.19) we have

hi o~
EE(w) < C <a#|@ — Hk@|f/2 o7+ e
Z b

b — ﬁwllﬁ@) : (3.22)

We are now in a position to prove the following result.
Lemma 3.2.7 Let T € T and v € H Y(T) N HYY(T) with 0 < r < k. Given Ppv defined as

in (3.20) and (3.21), we consider the quantity ELX(v) defined by (3.18). If T € T, i € {1,2},
then

P C 2r+1 1,112 h2r+2 1,112
BE() g | ®1alhr) (7105 0l + 2ot ol )

5
+ 5@k, = 1) (B R0, D w6 + B 102,05, v 6,r) ) (3.23)

where ®1a(k,r) = 201 (k,r) + Dok, r)/2.

Proof. Assume that T' € T;, i € {1,2}, and let 0;,7 and 0,,.T be the collection of the edges
of T parallel to the z; and z;« coordinate directions, respectively. From (3.22), upon returning
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to OT using (3.14) and applying the trace inequalities of Lemma 3.2.1, we have

hx hx
BE) <O (3510 = Mol or + 4l — TeolR 1 + 45 [0 = T,
13

1 hi.
<C<<h2 —I—h ) lv — Hkv||0T+6

hij«
+fﬂv—mﬂhﬂw—ﬂwhﬂmrﬂw— 210 = o), o
1

€ 1
<c((+7) o= molBa

hZ  hi
(2 25 ) o~ Mt I+ (e 4 00 0 — Mo ).
i (2

2
(U - Hkv)mi* ||3,T + 5”(” - Hkv)l'i 3,

With assumption (3.9) this bound may be written

1 hZ.
BF @) < 0 (o = Tl + 310 = Mo, I+ b0 = Mool )

Thus we have bounded EL(v) in terms of the interpolation error. Finally, assuming that
v € H™*Y(T) N HYY(T) with 0 < r < k and using the interpolation error bounds stated in
Lemma 3.2.6, we get (3.23). O

We are now ready to prove the following a priori error bound in the energy norm gl/?

| 1,0
Theorem 3.2.8 Let u € V be the solution of (3.4) and urrp € Vgrrp the solution of the
residual—free bubble problem (3.7). Assume that the partition Ty, consists of aziparallel rectan-
gles and that there exists a constant ¢ € (0,1] such that, for any T € Ty, € < cmin{hy, ho}.
Finally, let T1 be the sub—partition given by all T € Ty, such that hy < hg, and let Ty = Ty \ T1.

If u € H1(Q) N H}(Q), then there exists a positive constant C, independent of the mesh
dimensions, of k and of €, such that, for any 0 < r <k,

1/2 ®(k,7) - 2r+1 ) gr+1,, (12 h2r+2
e/ %|lu —ugrpli,a < CW Z Z (hi 103, ullo,r + 10;
i=1 \T€T;
1/2
+hs ol + xﬁwmﬁﬁ> (3.24)

where ®(r, k) = max{®12(k,r), 3®2(k,r — 1)}. The constant C only depends on the constant
in the trace inequality (3.16) and on the constant in Lemma 3.2.2.

Proof. Let P be the Vrrp projector defined on the whole domain {2 using the local
projector Pr defined above; that is, for v € H?(Q) N Hj(Q) we define Pv, = Prv,. We
consider the decomposition u — ugrpp = (u — Pu) + (Pu — urpp).
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Using the inequality (3.5) and Galerkin orthogonality, we have that

elu — urpBll g < L(u— urpB,u — URFB)

= E(u — URFB,U — Pu)

Furthermore, on applying the Cauchy—Schwarz inequality to the explicit definition of the bi-
linear form (3.3), we get

6|u—uRFB|iQ < Z (6/ V(u—ugrrg) - V(u— Pru) dz
TET, r

+ /Ta -V(u —urrp)(u — Pru) dac)

S C Z (51/2|u — URFB
TeT

ur) (12w = Prulur + 72 u = Prulor)

1/2

P
< Ce'l?u — URFB|1,0 Z (61/2|U — Prulir + e 2 ||u — PTUHO,T)
TET,

Next, we split the sum in the right—hand side among the sub—partitions 77 and 75 to obtain

e?lu — uppplio < C Z ( Z E%FD(U))I/Q’

i=1,2 TET;

with EE(u) as in (3.18). The required bound now follows from the projection error bound
(3.23). O

Remark. When the problem (3.1) is strongly convection-dominated, the solution is highly
anisotropic. For this reason it is crucial that the error is bounded by appropriately weighted
norms of directional derivatives of the solution, as it is for our error bound (3.24). Notice that,
if the partition 7}, is shape regular, since we are assuming that ¢ < cmin{hy, ho}, the a priori
error bound (3.24) implies the error bound presented in Section 2.

3.3 Extension to isoparametric finite elements

We can extend the results discussed in the previous section to general quadrilateral partitions
of Q by considering isoparametric finite elements (see [33], Section 4.3).

Similarly to the case of affine-equivalent finite elements, a (Lagrange) isoparametric finite
element (f, P ) N ) is constructed by starting from a reference standard Lagrange finite element
(f, P, Z/\f) (see, e.g., Ciarlet [33], pp. 80-81), through a mapping F : T —» T assuming that
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all components of Fz belong to P. The finite element is then given by:
T = Fx(T),
ﬁz{p:f—ﬂ&: p:ﬁoFf_l, forsomeﬁeﬁ},
N={na: PSR , for each node a of T\}
p — p(Fz(a))
We remark that the mapping Ff is not necessarily invertible: this has to be assumed.

A family of finite elements (7', P, N) is said to be an isoparametric family if all its elements
are isoparametrically equivalent to a reference element 7'.

We will consider conforming isoparametric families of finite elements such that any T € Tj,
is quadrilateral and P = Qj|s. These are the natural generalisation to arbitrary quadrilateral
meshes of the axiparallel meshes considered in the previous section.

Obviously, with our choice, each basis function p of the reference finite element (7', P, N)
vanishes along each face of any T which does not contain the node associated with p. This fact
ensures the continuity of the finite elements along the edges, and hence we have a conforming
finite element space

?h:{UGCO(Q) cv|lpe P VTEﬁ},
where T}, = {CZN“} is the partition defined by the finite element family (T\, }3, N ).
Finally, the RFB space is defined, as before, as the sum
Virp = Vi + By

To maintain the dimensional separation crucial to the anisotropic analysis, we shall fol-
low the approach proposed in [53]. The isoparametric mapping Fz is decomposed into two
mappings A7 : T — T and Qr : T' — T such that:

1 T is a rectangle of dimensions h; > 0,1 =1,2;
2 Ar is an affine mapping,
3 The Jacobian Jg,. of Qr satisfies
Cr! < |det Jg,| < C4,
ol < Con Vi =1,2,
for some positive constants C7, C independent of the size of T.

The last item ensures that the dimensions of T are similar to those of T, see Figure 3.2. In
other words, the stretching from the reference element 7 is related to the affine transformation
A7, while Q7 accounts for the shape of T'. Moreover, the ‘intermediate’ mesh

Tn={T:T = Q}ICZN“, for some T € Tp} (3.25)
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A, N
/ !
E

=)

Figure 3.2: Decomposition of the isoparametric mapping F : T — T into the diagonal affine
mapping Ar and the isoparametric dimension—preserving mapping Q.

is of the type discussed in the previous section.

The error analysis is carried out as before, mapping the projection error to the reference
element. But, in order to obtain bounds which do not mix the dimensions A; and hs, which
are ultimately the dimensions of T, when scaling back we stop at the ‘intermediate’ mesh Tj,.

Theorem 3.3.1 Let 4 € V be the solution of (3 4) and iiprp € Vrrp the solution of the
residual—free bubble problem (3 ’7) Assume that (T, P, N) is a conforming family of isopara-
metric finite elements and let (T, P, N) be the reference finite element. Given the isoparametric
mapping Fz : T - T, let Fz = Qr o Ar with Qr and Ar satisfying conditions 1, 2 and 3
above. Moreover, let Ty, be the partition (3.25) related to Ty through Qr and assume the exis-
tence of a constant ¢ € (0,1] such that, for any T € Ty, € < cmin{hy, ho}. Finally, let T; be
the sub—partition given by all T € Ty, such that hy < hy, and let To = Tp \ T1.

If & € H*1(Q) N H}(Q), then there exists a positive constant C, independent of the mesh
dimensions, of k and of €, such that, for any 0 <r <k,

h2r+2

= 2
o (k,r .
2l s o < C o) S ( S (g e + oo

i=1 \TE€T;

1/2
+hh ||a iar UHOT-l-hQT 1h ||87"l6x1*’u,||%,T>> (3.26)

where for every T € Ty, u = G|z o Qr and ®(r k) = max{®z(k,r), 3®2(k,r — 1)}. The
constant C only depends on the constant in the trace inequality (3.16) and on the constant in
Lemma 5.2.2.

Proof. We scale the projection error, say E (@), from the element T to the intermediate
element 7" and then simply refer to the proof i 1n Section 3.2. In order to do so, we need to
make sure that the space Vrrp|s is transformed into Vrpp|r = Vi|r + H}(T). Certainly
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Vil = Qk|r as before. As for the bubble component, this is preserved since the mapping Qr
is smooth with a smooth inverse (see Theorem 4.3.2 in [33]).
Let 9 € V and Py = Pro Q7'. We consider the quantity Eg(v) given by

EL(0) = elo— Pfﬁﬁ,f +e Yo — Pfang,f

< O (elv = Profip +e v = Proll§ r) = CEf (v),

where the constant C only depends on the Jacobian of Qp and its inverse (this is easy to
check using the chain rule), and v = 9 o Q7. We now conclude using (3.23) as before to bound
E; (trrp o Qr) and applying again the argument in the proof of Theorem 3.2.8 to the RFB
solution 4rpp belonging to the new space Vrpp. O.

3.4 A different approach: dealing with affine triangulations

We now discuss the case of triangulations 7} consisting of affine-equivalent (triangular or
quadrilateral) elements. As before, our only assumption on the triangulation is conformity, i.e
that any two elements in 7 either have a common edge or a common vertex, or they do not
intersect at all.

The following a priori error analysis is based on Lemma 3.2.2 and on the technique intro-
duced by Formaggia & Perotto [44] (see also the references therein and Micheletti, Perotto and
Picasso [73]), to prove anisotropic error estimates for the interpolation error. More precisely,
we will employ some ad hoc scaling properties derived in [44] in terms of some characteristic
quantities of the affine transformation F : T — T which we will define in a moment, where
T is the reference element (the unit simplex or the square [—1,1]2) and T is a generic triangle
in 7p,.

Notice that [44] and [73] deal with triangular elements, but the tools which we borrow from
those papers are generally valid as long as the mapping Fr is affine. On the other hand, a
limitation of the approach is that only an a priori error bound in terms of the H?-seminorm
can be obtained, so this analysis is relevant only in the case of P; and Q; finite elements.

Let Fr(z) = M& + t (we omit the dependence of M and ¢ on T to simplify the notation).
The matrix M is invertible, hence it admits a unique polar decomposition into M = BZ, where
B is symmetric and positive definite and Z is orthonormal.

Further, B is factorized as B = RTAR, where A is diagonal with positive decreasing
entries (the eigenvalues of B) and R is orthonormal (with rows which are the eigenvectors of
B). Hence,

A=
0 A

Al 0] P

where A1 > X2 and 71, ry are the eigenvalues and eigenvectors of B, respectively.
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The eigenvalues A1 and Ay of the scaling transformation replace hy and hy of the previous
sections in describing the dimensions of the element 7", with the advantage of being independent
of the coordinate axes (we notice that, if the mesh is axiparallel, then the two definitions
coincide up to a constant depending on the reference element).

With this new notation, we get the following scaling rules, which are the counterparts of
(3.10) and (3.11):

Wlsr = Airellolf 7 (3.27)

Al
plir < Tl (3.28)

The equality (3.27) is elementary. As for (3.28), this is proved in [44] as Lemma 2.2.
To scale back from the reference element we shall use the following identity which is
Lemma 2.2 in [73], see also the proof of Lemmas 2.1 and 2.1 in [44]:

s _ N A3
|1)|2,1q = )\—2L111) + )\—ILQQU 4+ 2A1 A2 Lqov, (3.29)
where
Lijv = / (rTH(v)r;)® de,  withi,j =1,2, (3.30)
T

and H (v) is the Hessian matrix associated with the function v, that is,

v v

022 0x10T2
H(U) - 8%v 8%v
0x10x2 8_:135

Theorem 3.4.1 Let u € V be the solution of (3.4) and ugrrp € Vgrpp the solution of the
residual—free bubble problem (3.7). Consider a conforming affine—equivalent triangulation Ty,
assuming that there exists a constant ¢ € (0, 1] such that, for every T € Ty, € < cAe, where
A1 > A9 are the characteristic dimensions of T defined above.

If u € HX(Q) N H}(Q), then there exists a positive constant C independent of the mesh
dimensions and of € such that

1/2

)\4
61/2|u — URFB|1’Q <C Z (A_;LHU + )\%LQQU + 2)\%)\2L12u> , (331)
TET

where the terms Lyj, i,j = 1,2, are defined elementwise as in (3.30) in terms of the Hessian
of u.

Proof. Let T € T,. As in the previous sections, we need to bound the quantity given by
equation (3.18), that is,

Ep(v) =¢elv— PTUﬁ,T +e v — PTUH%,T,
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where v € V and Prv = Pv|r is to be chosen under the constraint that Pv € Vrrp. As before,
we start by scaling EL(v) to the reference element 7. Using (3.27) and (3.28) we get:

1o . _ N .
EL(v) < 6>\—2|1) - vaﬁf + e A\ ot — va||§,f

-1
(il (E) o P2
= )\1 <>\_2|U - PT’U|1j; + <>\2> HU PT,UHO,?) . (332)

We then apply Lemma 3.2.2, this time to (9 — frk@)‘a?, where 75, is the standard Lagrange
interpolant defined on the reference triangle T\, and with ¢t = £/X9. In this way we get
A
I Lisn o~ a2 NN
Er(v) <C <6>\—2|v - ka|1/2,3f + Ao — ka”o,af) )

Instead of scaling back to the boundary of the element 7" as was done previously, we now
proceed by applying the Trace Theorem (3.13) and the standard Lagrange interpolation error
bounds on T (see Ciarlet [33] for the full description or Lemma 4.3.4 for the results used here).
Since Ay < A1 and € < ¢y with ¢ € (0,1] we get

A NP
Bi(w) <C (r n Al) 6 — o2 -
< COMof3 5
)\4
S C <>\—1L11U + )\%LQQ’U + 2)\%)\2[112’0) , (333)
2

the last bound being due to (3.29).
The desired error bound now follows by repeating the steps in the proof of Theorem 3.2.8.
O

As we mentioned earlier, if the triangulation 7}, is axiparallel, then A\; = h;/¢;, with h; and
¢, © = 1,2, being the dimensions along the coordinate axes of T" and f, respectively. In this
case Theorem 3.4.1 collapses to the a priori error bound (3.24), with the only limitation that
r=1.

Finally, if the partition of €2 is affine quadrilateral, a special case of the isoparametric
elements discussed in the previous section, then the bound (3.31) can be seen as a more
explicit version of the bound obtained previously.

3.5 A numerical example

We consider the following simple model problem with mixed boundary conditions:
—eAu+uz, =0 inQ = (0,1)%,
uw(z1,0) =0; wu(z,1)=1, 1 €]0,1]
Uy, =0 on'y = ({0} x (0,1)) U ({1} x (0,1)).
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Due to the homogeneous Neumann condition on the two vertical edges of 2, this is ‘virtually’
a 1-D problem, its solution being given by
e®2/f — 1

u(z) = ST
The RFB discretisation of boundary value problems with mixed boundary conditions is not
dissimilar from that of problems with Dirichlet boundary condition already discussed in detail.
To start with, we remove the non-homogeneous Dirichlet boundary condition acting on 9 = 1
by subtracting a function w € H'(£2) obeying the boundary conditions imposed in the definition
of the problem. Having done that, the space Vrpp is still given by (3.6) only that, this time,
the solution space is given by

V={veH(Q):v|r, =0},

where FD = 0N \ FN.

We consider axiparallel uniform rectangular grids 7, of dimensions h; and hy. Clearly, if
ho < hi, then we may set T, = T, if hy < hg, then T, = T; and finally, if Ay = ho, then
T, = T. Since all derivatives of the solution u in the direction of the x;—axis are identically
zero, the error bound (3.24) simply becomes:

1/2
1/2 5 h3 2,112
2~ unrnlin < | 3 o {nd, 12 108 ulf
TeT
The purpose of the experiment is to test the validity of the error bound, either by fixing h;
while halving hy (correct refinement), or fixing hy while halving hy (wrong refinement).

Performing the correct refinement is, of course, not too different from solving the related
sequence of 1-D problems. The error and error bound are shown in the loglog plot on the left in
Figure 3.3, for e = 1072, The asymptotic behaviour of the error shows first-order convergence,
as predicted by the analysis of Brezzi et al. [28] presented in the previous Chapter.

The similarity of the numerical solution to our 2-D model problem with the 1-D numerical
solution is lost when the wrong refinement is performed (notice that this does not happen
when applying the standard affine Galerkin method). As predicted by the error bound, the
accuracy of the solution actually deteriorates under the wrong refinement; see the loglog plot
on the right in Figure 3.3. This is due to the peculiar definition of the RFB finite element
space. Mesh refinement corresponds to a relative impoverishment of the bubble subspace, and
an enrichment of the piecewise polynomial subspace. If the latter subspace, as is the case with
our wrong refinement, is ineffective, then the overall approximation properties of Vrrp will be
worse than on a coarser mesh.

In the limit as h; — 0 the solution becomes constant along x;, that is, it tends to the piece-
wise O standard Galerkin solution, which is unaffected by the reduction of hy, see Figure 3.4.
Asymptotically in the case of the wrong refinement (with h; — 0) the error is, consequently,
O(1) (cf. Figure 3.3 (right)).
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Figure 3.3: £!/2-weighted H'-seminorm error and error bound under hy refinement (left) and
hy refinement (right); e = 1072

Another way of seeing this is that since the bubble part of the solution is forced to tend to
zero as h1 — 0, its stabilising effect is diminished until, in the limit, it vanishes and the RFB
method collapses to the standard Galerkin FEM.

The detailed error analysis of the RFB method on shape-regular triangulations in the next
chapter is meant to clarify the approximation properties of the method in the pre—asymptotic
regime when ¢ < ch. In particular, we shall relate the phenomenon just observed to the inade-
quacy of V}, in approximating, along the skeleton of the triangulation, the typical exponential
behaviour of the solution in the boundary layer.

3.6 Remarks on the tuning of the SD—parameter

In the introduction to this chapter we pointed out that the analysis of stabilised finite element
methods on highly anisotropic meshes is a relatively young field of research. In particular we
refered to the critical issue of classical stabilised methods, namely the tuning of the stability
parameters; to the best of our knowledge, the first study addressing this topic was the article,
published in 1996, by Apel and Lube [5].

Ideally one performs adaptive mesh refinement by starting with a rather coarse mesh on
which stabilisation is necessary, possibly turning off the stabilisation locally in the course of the
refinement process. In many cases, and convection—-dominated diffusion problems are certainly
one such case, an effectively refined mesh consists of extremely stretched elements.
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N —— Exact sol.
/ h,=1/4
2k / 4 h1=1/8
/ I h1=1/16
/ o h,=1/32
25k —a— h1=1/64
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Figure 3.4: Profile of the solution along z; = 0 under h;—refinement (as in the right plot in
Figure 3.3). The lowest profile represents the piecewise Q; standard Galerkin FEM solution.
The exact solution is also plotted for comparison.

Let us consider, for example, the boundary—value problem

—eAu+(2,1)T-Vu=0 inQ=(0,1)2,
u(z1,0) = u(l,z2) =0, z1, T2 € [0,1], (3.34)

u(z1,1) = u(0,72) = 1, z1,x2 € [0,1].

The solution of (3.34) exhibits an internal layer emanating from the origin of the coordinate
axis and a boundary layer situated along z; = 1. A typical mesh that is appropriately refined
to capture the thin layers in the solution is the one depicted in Figure 3.5. The elements are
stretched in the direction orthogonal and tangential to the convection field in the vicinity of
the boundary and internal (characteristic) layer, respectively.

We have established through a prior: analysis that the RFB method can be applied suc-
cessfully on anisotropic triangulations. Since this method is parameter—free, it can be used to
assess the choices of stabilisation parameters in classical stabilised methods proposed in the
literature.

Let us focus our attention on the design of an optimal SD—parameter for the linear SDFEM
on triangular meshes. The name SDFEM (streamline—diffusion finite element method) is used
to collectively refer to the most studied classical stabilised methods, namely SUPG, GALS and
DWG. Indeed, these methods, given by (2.33), (2.34) and (2.35) respectively, are equivalent in
the case of linear elements.
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Figure 3.5: A mesh refined anisotropically to capture an internal and a boundary layer. Cour-
tesy of M. Picasso [73].

We have seen in Section 2.4 that under the assumption that the coefficients in the differential
equation are piecewise constant over €2, the linear RFB method reproduces the stabilisation
term of the linear SDFEM method, that is

Z T (a g Vuh, a - V’Uh)T y (335)
TeT,

with the stabilisation parameter given through the process of static condensation by

7,
T = 77 dem.
T Jr

This choice of 77 is predetermined by solving (2.39) for by in H}(T). In practice, by is
obtained by solving the local b.v.p. for the bubble numerically, thus yielding approximations
to the ‘optimal’ value 7. Here we will consider two instructive choices: a very accurate
approximation of the optimal value, still referred to as 77, and the value obtained by solving
the reduced (locally hyperbolic) problem (2.60), namely

. 1 /~ ha
T = 7= bT de = )
T| Jr 3|al

where hq is the elemental diameter in the direction of a.

On shape regular meshes it is well established (see, for example, Section 2.4 or [82]) that
the optimal SD—parameter should be proportional to the characteristic dimension hp of the
element in the convection—dominated regime and proportional to h%/ ¢ in the diffusion dom-
inated regime. Moreover, the correct switch between the two regimes is given by the local
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Péclet number. For example in [72], following [46], it is defined as:

min(Per, 1)

2||aloo,r

Pep := hr Hagoo’T; T = hr
€

The RFB coefficient 7 has precisely the same behaviour; see the example below.
Turning to anisotropic meshes, since for every element we have two characteristic dimen-
sions A1 and A9, there is no obvious definition of the mesh Péclet number in the first place.
The a priori analysis performed in [5], [67] and [73] leads to the replacement of hy with
the shorter dimension of the element, namely ;. For example in [73] we find the following
definition:

lallsor (1)

min(Per, 1)
T )
6e ' r

Per : =\
i 2[alloor

= X\

Considering the definition of 77, we see that the RFB method suggests, instead, to base
the definition of the mesh Péclet number on hq. Inspired by this observation, the authors of
[73] refined their analysis (see [72]) and defined the new characteristic length

1

Na=""—rsair
TR E o

which is comparable with hg. The Péclet number is then chosen accordingly. As for the SD—
parameter, this is still required to behave like A\2/¢ in the diffusion-dominated regime, while
in the convection-dominated regime it is chosen to depend on Aq:

v .
1 — Per if Pep <1,
Per := )\aiuaHOO’T; 7}2) = A0 2o
Ge 2[|al|so,r .
1 if Pep >1.

(2)

This definition is dependent on the direction of a: 7’ is qualitatively different from (i.e.
larger than) 7%1) if the triangle T is aligned with the convection field. This case corresponds to
the wrong refinement discussed in the previous section if 7" is in the boundary layer, while it
corresponds to a correct placement of the element 7' if this is in the proximity of a characteristic
layer.

Hence we expect the algorithm using T:(F2) to be more robust (stable) under the wrong
refinement mentioned above, possibly over—stabilising in the presence of characteristic layers.
Otherwise the two choices are qualitatively indistinguishable (see below).

Here we propose a further definition with the same asymptotic behaviour as 7}2), but with

a different turning point, namely:

_ M Jalor @ _ min(Per.1)

Per := —
T =3 6 T 2]lalloo.r
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——

Figure 3.6: Sketch of the triangular shapes and velocity fields a = (cos a,sina) and their
mutual orientations: 1. Isosceles triangle with a = /4, 2. Right—angle triangle with a =
w/2 —1°, 3. Right-angle triangle with oo = 1°.

This choice is closer than 7';2) to the ‘optimal’ RFB parameter 7. The reason for this is
ultimately related to the fact that 77 is a bad approximation to 7p on triangles that are

(2)

stretched in the direction of the convection field: it turns out that in this case 7’ is closer to

(3)

7r while 7,7 follows 7.

We can see this by calculating mp, 7, 7'7(11), 7'7(12) and 7}3) on a sample of triangular shapes
and convective fields.

Let T be a right-angle triangle oriented along the coordinate axes, so that A\; = h; and
Ao = hg are its characteristic dimensions. We calculate the SD—parameters defined above on
a sequence of triangles T' obtained by halving of hg starting from hy = 1/2. We do this three

times in succession, while varying hy and the field @ = (cos «, sin ) as follows (see Figure 3.6):
1. hy = he and o = w/4 (isosceles shape-regular triangle);
2. h1 =1/2 and a = 7/2 — 1° (right—angle triangle stretched orthogonally to a);
3. h1 =1/2 and a = 1° (right—angle triangle stretched in direction of a).

This sample is quite comprehensive. The three experiments correspond to the three loglog
plots in Figure 3.7. In all cases the value ¢ = 10™* is used for the diffusion coefficient.

In the first two experiments all values Tj(f), i = 1,2,3, behave as 71 (we have not plotted

7'%3) in this cases because it coincides with 75). While, as it should be expected, 77 is close to
7p only in the convection-dominated regime.

As we suggested earlier, 71 separates from 77 much earlier when the element is stretched in
the direction of a (see Figure 3.8 for a zoom of the bottom plot in Figure 3.7), hence showing
that the concept of regime (and local Péclet number) should indeed be dependent on the relative
orientation of the triangle and the convective field.

Consequently, only in this case, do 7'1(?) and 7}3) differ (as for Tj(ﬂl), this is definitely too
small: after all, the fact that T:(Fl) under—stabilizes was the reason for introducing the new

(3)

parameters). As an aside, we note that 7;.” follows more smoothly 77 if in its definition g is
substituted with hgq.
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We have tested the two choices 7%2) and 7%3) by solving the boundary-value problem (3.34)
using the SDFEM on the mesh in Figure 3.5. The elevation and contour plots of the solution
are shown in Figure 3.9. Since the mesh is correctly refined, there is no obvious difference
between the two numerical solutions; in fact the solution obtained by using 7}3) is slightly less
diffused and more oscillatory across the internal layer (cf. the contour plots in Figure 3.9).
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Figure 3.7: Different choices of the SD—parameter plotted against ho for the three configu-

rations depicted in Figure 3.6. The parameter 73 coincides with 7o in the two upper—most

plots.
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°

Stretched triangle — a=1

Figure 3.8: Different choices for the SD—parameter: zoom from the bottom plot in Figure 3.7

Figure 3.9: SDFEM solution of (3.34) using 7'7(12) (left plots) and 7%3) (right plots).



Chapter 4

The RFBe method

The underlying principle behind the use of bubble methods (see, e.g. [21]), is that of enriching
the Galerkin finite element space with functions (bubbles) having compact support on every
element of the given triangulation. The bubbles are successively eliminated through static
condensation, leaving a generalised Galerkin scheme for the original finite element space which
is expected to have improved approximation properties. In general, this procedure is effective
when the numerical solution of the problem under consideration is sensitive to features present
on scales that cannot be represented on the given mesh (subgrid scales).

Following [17], we note that a limitation of bubble methods in general, and of RFB in
particular, is that only those subgrid features that do not cross the inter—element boundaries
can be modelled. We propose to further enrich the RFB method with edge bubbles, i.e. bubbles
with compact support on pairs of elements. The number of such edge bubbles should be small
relative to the total number of degrees of freedom, the idea being that they should be introduced
only on those edges where it is crucial that the subgrid scales are captured.

We show through a priori analysis, and illustrate by numerical experiments, that the result-
ing procedure, the enhanced residual-free bubble method (RFBe), can be successfully applied to
improve the RFB resolution of boundary layers in convection—-dominated diffusion problems.
A crucial property of the method is that the locally introduced edge bubbles give global im-
provement of the solution, showing that they have a stabilising effect on the scheme. Moreover,
the RFBe numerical solution is able to capture the correct behaviour inside boundary layers.

4.1 A framework for the enrichment of the RFB finite element
space

Given a bounded polygonal domain € in R?, let £(-,-) be a bounded coercive bilinear functional
on V = H}(Q) and let f € L%*(Q). We consider the elliptic boundary value problem in

o8
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variational form:

find u € V such that
(4.1)

L(u,v) = (f,v) Yo e V.

Assume that we are given a conforming and shape-regular partition 73 of Q2 such that any
T € Ty, is affine—equivalent to a reference element T through an affine map Fr.

As usual, we define over T; the standard finite element space V}, restricting ourselves to
the cases of piecewise linear elements (if T is a triangle) or piecewise bilinear elements (if T
is a rectangle). Moreover, let By, be the space of residual-free bubbles according to definition
(2.13), i.e. the set of all functions in V' that have support on every element 7' € 7;,. That is,
we define

Vi, = {uh € HY(Q) : wpy, € Py(T) (orwpy, o Fr € Q(T)) VT e Th} (4.2)
B, = P Hy(T). (4.3)
TETH

The residual-free bubble finite element space is then defined as Vrrp = Vi @ By, the direct
sum being ensured since V};, does not contain nontrivial bubbles, i.e. V;, N By, = {0}.

Finally, as usual, the residual-free bubble method (RFB) is given by restricting (4.1) to
the subspace Vrrp:

find ugrrpp € Vrrp such that
(4.4)

L(urrp,v) = (f,v) Vv € VrEB.

As discussed previously, the bubble part of the solution can be eliminated, at least formally,
from the RFB formulation through a static condensation procedure which leads to a generalised
Galerkin formulation over the standard finite element space V. In other words, the RFB
method can be formulated as a two-level algorithm which corresponds to a sort of divide—
and—conquer principle: the space of bubbles Bj, should take into account the fine scales of the
problem while the solution on V} gives an approximation of the global behaviour of u.

The draw—back of such a two—level procedure is that only the small scales that do not cross
the boundary of any element of the partition will be taken into account.

Following an idea by Brezzi [17], we propose to further enrich the RFB space with the aim
of improving the approximation properties on selected edges of the partition.

The framework is that of the general augmented space formulation proposed by Brezzi and
Marini in [25] which we have introduced in Section 2.2.1. Given a finite dimensional space of
traces @y, over the skeleton X of the partition, we define the augmented space

Vai={veV v, €d}. (4.5)
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The associated general augmented space formulation is given by the approximation of the
variational problem (4.1) into V, (c.f. (2.19)):

find u, € V, such that
(4.6)
L(ta,va) = (f;va) Vg € Va.
As explained in Section 2.2.1, V, admits the representation
Vo =V & By,
where
Vii={v eV, : L(v,v) =0 VYo, € By}, (4.7)

and By, is the residual-free bubble space given by (4.3).

4.1.1 General definition of the RFBe method

The formulation (4.6) represents a framework for the modification of the RFB method. We
mentioned in Section 2.2.1 that the RFB method is obtained from the augmented space for-
mulation by choosing ®;, = V},|s: we now propose to modify the RFB method by augmenting
Vi|s locally and considering the associated augmented space formulation.

This can be done by considering as space of traces ®; the traces of Vj plus a relatively
low—dimensional space of traces ®. assuming that any element of ®, has support on a single
edge. In this way we ensure that the space

(I)h = Vh|2 (o) (I)e,

is defined through direct sum of its components. Indeed, on any given partition edge v, the
elements of @, are either identically zero, or one-dimensional bubbles, while, by definition, V},|,
does not contains bubbles. (For the definition of bubbles, see (2.1)). Hence V},|, N ®.|, = {0},
for any edge « of the partition.
We then consider the augmented space V, given by (4.5), and name the corresponding
augmented space formulation (4.6) a RFBe (enhanced residual-free bubble) method.
Moreover, given the decomposition V, = V; @ B}, discussed above, we define

Vi, = {veV vy € n},
Ep:={veV, vy € X},
and name edge bubbles the elements of Ej. We clearly have that
Vo=V, @ E), @ By (4.8)

Further, we notice that, by construction, the space of edge bubbles E} admits a basis whose
elements have support on the couple of elements sharing a given edge.
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The choice of the edge bubbles or, more precisely, of their traces in 3, should be dependent
on the problem under consideration; indeed the edge bubbles may be chosen by exploiting the
differential equation or, alternatively, some information about the solution obtained through
a previous computation.

In the next section we present an example of a successful application of the RFBe framework

and show how an a priori error analysis can be used to determine a suitable choice of edge
bubbles.

4.2 The RFBe method for the resolution of boundary layers

We exemplify edge bubbles designed to capture boundary layer behaviour and we prove,
through a priori error analysis, that the particular choice of edge bubbles results in reduc-
tion of the discretisation error beyond that of the classical RFB method.

Consider the following boundary value problem for the convection—diffusion equation:

{ Lu:=—Au+a-Vu=f inQ=(0,1)2

(4.9)
u=20 on 012,

where the convection field a € [C(Q)]2.
We define outflow boundary the subset of 0 given by

Ny ={xe€dN:a-n>0}.

In the convection-dominated regime, the solution exhibits a normal boundary layer in corre-
spondence to the outflow boundary.

We aim to obtain increased resolution of the boundary layer behaviour over a standard
Galerkin finite element method and over RFB by careful selection of edge bubbles.

4.2.1 Definition of the RFBe method

Let 75, be a shape regular axiparallel rectangular partition of Q (as always, h represents the
maximum diameter over the elements of the partition). Thus, the mesh is the tensor-product
of the subdivisions 0 =z < z1 < - <z =land 0 =yy < y1 < --+ < y, = 1. Moreover,
let T' be the set of all edges in the partition.

We define as the boundary layer region a neighbourhood of the outflow boundary of width

k =¢eln(1/e), (4.10)

in the direction orthogonal to the boundary (see Figure 4.1). Accordingly, we distinguish among

those elements that intersect the boundary layer region and those that do not by introducing
the subpartitions:

T = {T €Tp:dist(T,004) < K} (4.11)

7'outer = 771 \777[ (4.12)
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Similarly, we decompose the set of edges I' onto
Ly ={y CT:dist(y,004) < k}
Couter =T \ Fbl~

Finally, given an edge v we let h., := |v|.

We make the assumption that h 2 k an say that the boundary layer is not resolved by the
given mesh.

We propose to introduce one edge bubble for any edge that cross the boundary layer. Under
the above assumption, the number of such edges is m + n — 2 which in turn is bounded by
Kh~! where K is a constant depending only on the shape-regularity of the mesh. In other
words,

#(Ty) = O(l/h)§ #(Couter) = O(l/h2)~ (4.13)

Boundary layer

,/ region

Figure 4.1: Axiparallel mesh. The edges where an edge-bubble is defined are marked.

Let T;, ¢ = 1,2, be the two elements sharing a given edge v € T'y;. We define the edge
bubble e, as follows:

[e]

e e, € H}(Q) and supp(e,) C (T3 UTY) ;

e the value of e, on v is given by the solution of the one-dimensional boundary value
problem

{ Lyow=1 inv, (4.14)

wy =0 on 07,
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where L, is a differential operator obtained from L by considering directional derivatives
along . In our case, if for example v is parallel to the y-axis as in Figure 4.1, then L, is
obtained on the associated boundary layer edge by discarding all terms with derivatives
in the z—direction.

e inside Tj, i = 1,2, e, satisfies
Ly (ey,0) =0 Yo € Hy(T)), (4.15)
where L7, is the restriction of £ to T;.

Remark. More generally, when v is not aligned with a coordinate direction, since the
Laplacian is rotation-invariant, we would define L,w = —ew”(t) + a,w'(t), where a, is the
projection of a along +.

To handle the case of convection—diffusion equations with symmetric tensor diffusion coef-
ficient, we would need to freeze the diffusion coefficient to an edge—wise constant tensor. Then
a local rotation of the coordinate system and stretching along the rotated coordinate axis can
be used to transform the diffusion term into the Laplacian.

We now define the edge bubble space
E}, :=span{e, : v € 'y },

and the RFBe method follows as the Galerkin formulation on the associated augmented space
(4.8).
Alternatively, in order to take advantage of the well-known approximation properties of
the underlying finite element space V}, we can consider the following equivalent definition.
As shown in the previous section, the space of edge bubbles Ej in direct sum with By,
and Vj. Thus, as already discussed in the case of the RFB method, we have the following
alternative splitting of the augmented space:

Vo=V, ®E;, ® By, =:Vp @ By, (4,16)

Since in (4.16) we have a direct sum, every v, € V, can be uniquely decomposed as a sum over
the three subspaces. Hence, the RFBe formulation reads

find ug = up, + ue + up € V, = V), & Ej, @ By, such that (4.17)
L(up 4 ue + up,vq) = (f,vq) Y, € V,. .
As before, testing in (4.17) with v, € By, we obtain the bubble equation
Lup,vp) = (f,v0) — L(up,v5) Yoy € By, (4.18)

where we have used the ‘orthogonality’ of Fj; and Bj, with respect to £ expressed by (4.15).
Starting from the standard RFB method formulation (4.4), we would obtain exactly the same
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bubble equation. That is to say, the introduction of the edge bubbles leaves the static conden-
sation procedure unchanged.

Formally, static condensation is carried out as follows. Letting ¢;, j = 1,..., Ny, be the
local basis functions for V3, on a generic element T € Tp, and considering the local decomposition
Up|p = Z;V:TI Ujpj, we have from (4.18):

Nt
Up| . :ZUjbj—i-bf, (4.19)
7j=1
where
b; € H}(T) such that
s (4.20)
L(bj,v) = —L(pj,v) Yo € Hy(T),
and
by € H}(T) such that
F= (4.21)
L(bs,v) = (f,v)  VYve Hy(T).

Assume that the variational problems (4.20) and (4.21) have been solved. Testing in (4.17)
with v € Vp and substituting u;, using (4.19), we arrive at the following problem on the space
Vp:

find uy, + ue € Vp such that

Nt (4.22)
Llup +ue,v) + Y | Y ULr(bj,v) | =(f,0) = Y Lr(bs,v) Vv e Vp.
TeT, \j=1 TET,

Thus, as for the standard RFB method (2.11), the RFBe method results in a generalised
Galerkin formulation except that this generalised Galerkin formulation is now over the locally
augmented finite element space Vp = V), @ Ej,.

We justify the choice of the edge bubbles through a priori analysis.

4.3 A priori error analysis

In the following pages, C' represents a constant whose actual value may change value at different
occurrences; C' may be dependent on a but is always independent of ¢ and the mesh size h.
We emphasise that the following analysis is valid under the hypothesis that h 2 x, where
K is the width of the boundary layer defined by equation (4.10). Of course, as the mesh is
refined, the relative improvement in accuracy due to the introduction of edge bubbles gradually
diminishes (see the numerical examples below) and as h becomes smaller the standard RFB
method will yield equally satisfactory results. Indeed, when h < k, even a standard Galerkin
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finite element method will provide good accuracy. However, our concern here is the case when
h 2 k.

To proceed, we shall strengthen our hypotheses on the mesh by assuming that it is quasi—
uniform, i.e. that there exists a constant ¢y > 0 such that

C()h S hT S h = max hT, (4.23)
TeTh

for every T € Tp, where hr is the diameter of the element T

As regards the data of the problem under consideration (4.9), we make the further assump-
tion that

a = (a1, as), where a1, a2 > ¢4 > 0, (4.24)

so that the outflow boundary 92 coincides with the union of the two sides x =1 and y = 1.
The analysis below is valid as long as internal layers are absent. For this purpose, we assume
that f is a smooth, say, f € WL (Q). Finally, we assume that diva < 0 in € to ensure coercivity
of the bilinear functional associated with L. Under the above hypothesis, the boundary value
problem (4.9) admits a unique weak solution v € H} ().

4.3.1 Properties of an asymptotic approximation

In order to analyse the RFBe method, we need to use information about the behaviour of the
solution based on performing an asymptotic analysis, in much the same way as in [60].

We note that the availability of an asymptotic expansion of the analytical solution u in
terms of the small parameter ¢ is only required for analytical purposes and is not needed in
the practical implementation of the method.

The reduced problem, corresponding to putting ¢ = Oin (4.9), is defined by

{ a-Vuyg=f in(,
(4.25)

Up|z=0 = Uo|y=0 = 0,

with solution ug € WL (9); first-order partial derivatives of ug exhibit discontinuities across
the characteristic passing through the inflow corner (0,0) of Q (see, e.g., [82], pp. 178).

Let T',,s be the set of those edges v such that ’c})’ is crossed by the characteristic through
(0,0), and let T's;, = Coyter \ I'ns - Under assumption (4.24), we clearly have

#(Tns) = O(1/h), (4.26)
#Tsm) = O(1/h%). (4.27)

We observe that, for every edge v € I'ys, ugly € H'(7); moreover,

|ugl; , < Ch,,. (4.28)
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Indeed, by hypothesis, the characteristic through (0,0) cuts «y into two disjoint open intervals
71 and 2. Since ug),, € WL (v), i = 1,2, we still have (assuming that v is parallel with the

z—axis):
|u0|i'y = |u0|%,71+|u0|%,72
< meas(n)[[une g, + meas(ys)lluoe 2o oy
< max{uo ey 0l Voo

Ch,.

An identical bound holds when « is parallel with the y—axis.

The same is true, of course, if v € T'y,. In this case, the eventual extra regularity of ugl
depends on the regularity of f. If, in particular, f € WZ(Q), then ugl, € W2(y), for any
v € Tgp,. Hence, with a reasoning similar to he proof of (4.28), we get ug|, € H%(7y) and

|ugl3, < Ch,. (4.29)
We consider the asymptotic approximation of u given by

Uas(J?, y) = UU(:E7 y)
_ UO(I, y)efal (lay) — U (x’ l)efaz(xal)l_Ty —+ uo(l, l)eia‘l (171)%67‘12(171)%

=uo(z,y) + uc(z,y), (4.30)

11—z
€

where the last term in u, is the corner layer correction, relevant in the vicinity of (1,1) where
the two boundary layers intersect (see, e.g. [38]).

The accuracy of the asymptotic approximation u,s depends on the smoothness of the
reduced solution. In particular, the following result has been proven by Schieweck ([89], Lemma
4.4, pp. 33; see also [82], pp. 184).

Lemma 4.3.1 Assume that a € [C1(Q)]?, f € WL(Q) and that (4.24) holds. Given u €
H} (), the solution of (4.9), and ugs as in (4.30), it holds

elu — Ucwﬁ,ﬂ +[lu - Ua8||g,ﬂ < Ck, (4.31)
where C' is a constant independent of e.

Along the a priori error analysis, we will often use the following bounds proven in Ap-
pendix A.3.

Lemma 4.3.2 Given an aziparallel rectangular mesh Ty, satisfying (4.23), consider the sub-
partitions Ty and Touter given by (4.11) and (4.12), respectively. Let u. be as in (4.30), under
the hypothesis of Lemma 4.3.1. If € < ch for some constant c € RT and € < 1/e, then

—2cocqh /e

e _
Y e <0 Y el < Ceene, (4.3

FEFouter FeFouter
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and

1 -
D lucfir <C—5 Y ludlfge < Ceh™" (4.33)
Ferl FEF[,[

4.3.2 A priort error bound

We recall some useful inequalities.

Lemma 4.3.3 Let T € T;,. For any v € H'(T), the trace inequalities

1
ofpar <€ (0B + ol ) (434
T
and
ol < © (g Il + 0~ ol + alol?) (4.39

hold, for any a > 0, with C independent of v, h and «.
Furthermore, for any edge v of T and for any v € H'(v), there exists a constant C inde-
pendent of v and h,, such that

[0t )2,, < C (1 v

3,7 + [l lvlloq) (4.36)

Proof. All the stated results are obtained by standard scaling arguments. In particular, (4.34)
and (4.35) are proven scaling, respectively, the Trace Theorem (3.13) and the trace inequality
12 112 " A
92 o < CUIBIZ 7 + 1ol 7101, 7).

(this standard result can be found, for instance, in Brenner and Scott [15]). As for (4.36), this
is obtained scaling the inequality

11754 < Clidllosl1dll.s, (4.37)

expressing the fact that the Hilbert space of fractional order H'/2(y) is ezact of exponent 1/2
(see, e.g., Bergh and Lofstrom [14], pp. 27). O

The restriction of a function belonging to Vrrp onto an edge of the partition is a linear
polynomial. This property will be used extensively in the following proof. In particular, we use
the following well known properties of the linear Lagrange interpolant operator in one spatial
dimension.

Lemma 4.3.4 Let v C R be an open interval of the real line and let w1 : C°(y) — Py be the
linear Lagrange interpolation operator. Then, for any v € H™(vy), m = 1,2, the following
interpolation error bound holds:

lu — muliy < ChI " |ulm,y, (4.38)
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for i < m. Moreover,
lu — 771U|1/2,7 < ChT_1/2|u|m,7- (4.39)

Proof. The result (4.38) is classical; see, e.g., Brenner and Scott [15]. As for (4.39), this is
obtained by applying (4.36) to v — v and using (4.38). O

Before developing the a prior: analysis, we show that the global error of a locally residual—
free finite element method is governed by the approximation properties of the augmented space
V, on the skeleton of the subdivision.

To switch to norms defined over the skeleton of the triangulation, we shall apply the
following result from [85].

Lemma 4.3.5 Assume that ¢ < h < 1, that (4.23) holds true and that the partition Ty is
shape regular. Then, for each T € Ty, each vy € HY?(9T), and each w € H'(T), there erists
a function v € H'(T) with v = vy on 0T and satisfying

2 — 2 2 2
elw—vfp e w—oldy <O (elw— vl por+lw—wllyr),  (440)

where C' depends only on T,.

Proof. This result follows easily by a scaling argument applying Lemma 3.2.2 to (w —vg) o Fip
with t = eh™!, where F is the affine transformation from the reference element 7" onto 7. O

We are now ready to prove the following lemma.

Lemma 4.3.6 Let u € V and u, € Vg be, respectively, the exact solution of (4.1) and its
numerical approzimation, the solution of (4.17). Then the following bound holds:

. 2 2
clu—uwaftn < C inf 7 (elu—vplpar+ Iu—veld o) (4.41)
P PTETh

Proof. For any v € V,, using the appropriate coercivity inequality and Galerkin orthogo-

nality, we have

L(u— g, u —ug) = L(U — Ug,u — V)
e(V(u—ua),V(u—v))g+ (@ V(u—1uy),u—v)g

< Celu—uglio (Ju—vlio+eu—1llog) .

elu _Uaﬁ,n

Thus, for any v € V,,

elu — Uaﬁ’g <C (6|u — v|iQ + 671||u — v||3,Q) . (4.42)
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We fix vp € Vp and consider its trace over the skeleton of the triangulation 7,. Applying
(4.40) with w = u and vg = vp|sr we have that, for some v € H}(Q) which is equal to vp|ar
on the skeleton of Tj,

2 — 2 2 2
elu—ofip+eu—vldy <O (elu—vplpor +llu—veldar),

for every T' € Tj,. Hence, since v € V, and recalling (4.42), from the arbitrarily of vp € Vp we
conclude that (4.41) holds true. O

The residual—free bubble finite element error bound (4.41) justifies the suggestion that the
error can be reduced by enriching the trial space on the edges and represents the starting point
for the a priori error analysis of RFBe.

Theorem 4.3.7 Let u € H}(Q) be the solution of the boundary-value problem (4.9) assuming
that ¢ € RY, f € WZ(Q) and a = (a1,a2) € [CH(Q)]?, with diva < 0 and a1,a2 > ¢, > 0.
Moreover, let Ty, be an axiparallel rectangular mesh satisfying (4.23) and ug € Vo = V,®E,® By,
be the RFBe solution where the edge bubbles are defined according to (4.14) and (4.15). Then,
as long as h > (1/cocq) k and € < 1/e, the following error bound holds:

61/2|U — Ugli0 + h71/2||a - V(u —ug)||-1,0 < C1 max (61/2h71/2, 61/4> + Csyh. (4.43)
The constants Cy and Co are independent of the mesh size h and of €, but may depend on a.

Proof. Let ugs be the asymptotic approximation of u given by (4.30). From (4.41) it
follow that, for any vp € Vp,

fu—uato < €3 (elu—vplor + lu—vrlor)
TeTh

IN

C |3 (el = was o o0+ llu = waslF o)
TET,

+ Z (5|Uas - UP|?/2,8T + ||ttas — UPH%,(?T)
TeT,

= C(I+1I).

From our assumptions on € and h it follows that A > ce with ¢ = cpcq. Thus, using the
trace inequalities (4.34) and (4.35) with o = min (¢//2, k), and the bound of the asymptotic
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approximation (4.31), we get

I < 0 ((hp" +a Mlu—usllfr + (= + @)u — a7 r)
TeTh
< C ((hil + Ofl)”“ - uasng,(l + (e + a)lu — “aSE,Q)
< C (dfl +ea 4+ a)
< C (6h_1 + min (61/2,h)>
<

C max (dfl, 61/2> .
Concerning I, we separate the contributions from those edges that cross the boundary
layer (in which the edge bubbles are defined), and those that do not:
II < 2 Z (6|uas — vp|%/2,7 + [|tas — vp 3,7)
"/epouter
2 2
+ 2 Z <5|Uas - ”P|1/2,7 + ||ttas — UP||0,7>

Y€y
= [IT+1V,

the factor 2 being due to the fact that we are now summing over edges v rather than through
elements 7" as in the original definition of I1.

To bound ITI, we consider the decomposition of the asymptotic approximation ugs = ug+uc
introduced in (4.30). On any vy € Loyter, since Vp|, = Vj,|, and

u. < Ce?  VYgeN, (4.44)

it is, therefore, natural to choose, vp|, = 71 (uo|).
Using the triangle inequality, (4.39), (4.36), (4.28), (4.13) and (4.32) we get

€ Z |”“5_UP|%/2,7 < 2 Z <|u0_771”0|%/2,w+|u0|%/2n>

’Yepouter 'YEFouter
2 —1 2
< ce| X mluol,t S (el By + luel el los)
’Yepouter ’Yepouter
2 2 -1 2
< Cel| > h+e D uli et DD g,
Y€l outer Y€l outer Y€l outer
< C(g_i_echocah/e) < Ce,

assuming, to obtain the last bound, that h > (1/2¢pc,)eln(1/e), which is a slightly less
restrictive assumption then what is required by the statement of the theorem.
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For the Lo—norm term in I11, proceeding in the same fashion, we obtain

> was —vplls, < D0 (lluo — muoll, + luells,)

’Yepouter 'YEFouter

IN

§ : 2 2 —2cpcqh/e
C h7|u0|1,7+e 0Ca /
'YEFouter

< C Z hi’)/ + 672cocah/5 <C <h + 672cocah/e> < Ch.
YEL outer

After comparing the two bounds we conclude that
111 < Ch. (4.45)

Notice that we can obtain sharper bounds by carefully distinguishing between edges where
uo has different regularity properties (as we have already mentioned, ug may only fail to be a
C' function across the characteristic curve that passes through the corner (0,0) on the inflow
boundary). Let I'ys and T’y be as in Section 4.3.1. Then, using (4.26), (4.27), (4.28) and
(4.29), we get

2 2 2
€ Z |U0—UP|1/2,7 = ¢ Z |Uo—7f1uo|1/z,7Jr Z |U0—7T1u0|1/2,7

'YGFouter 'YEFsm 'YGFTLS
3 2 2
< Ce E h’fy|u0|2,’y+ § : h7|u0|1,’y
YELsm YE s
4 2
< Ce E hW—I- E hw
YEL sm Y€ s

< Ce(h?+ h) < Ceh,

due also to the interpolation error bound (4.38) and (4.39). Similarly, we gain a factor of  in
the bound of the Loy—norm, and we conclude that

IIT < Ch2.

We now come to the analysis of IV, i.e. the term containing norms of u,s — vp over the
edges v belonging to I'y;: notice that on such edges Vp = V), ® Ej,.

Let us concentrate on the boundary layer associated with the boundary y = 1. For each
edge v; = 2; x [1 — hy,1],i=1,...,m — 1, let e, be the edge bubble associated to v; as it is
defined in Section 4.2. Since we have already fixed vp(z;,1 — hy) = uo(z4, 1 — h,), we have

Pl = Titoly + giey |y
l—y

= UO(sz‘,l_h%) h
Y

+ gie’Yi|’Yi7 (4'46)
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for some coefficient g; € R which we are free to choose.

We consider the following decomposition of the asymptotic approximation ugs(z,y) of
u(z,y):
az(z;,1) 7Y

e

Uas(zi,y) = wo(wiy) —uo(wi, 1)e”

+ (—uU(l,y)e’“l(l’y)l%i +ug(1, 1)e 0 (D=0 em(Ll)%‘)
= uf)(y) + Uiy (y) + u’c(y),

where we have named

7 a2(z;,1) Loy

uh(y) = uo(wi, y), u, (y) = uo(wi, 1)e” e
and the function ‘. collects all the remaining correction terms, which are related to the bound-
ary layer at z = 1 and to the corner layer. Since v’ is exponentially small in the sense made
precise by (4.44), the main task is to define v p|,. as a good approximation of uf) + uéy
Consider the decomposition
u + u’cy = (uo + wl(u’Cy)> + (u’cy — ﬂl(u’Cy)> .
We observe that (ulcy —m (ulcy))|% is the solution of the boundary-value problem

wi, (1—hy)—ui (1)

Lygw = ay(a;, 1) D gy
w'@'yi = 0’
where
Lyw:= —ew" + ag(z;, D)w'. (4.47)

In other words, it coincides with a multiple of the edge bubble e,,, as defined in Section 4.2.
Thus we obtain

i€yl = uéy - 7Tl(uiy)

by setting

gi ‘= GQ(ZL'Z', ]-)

In this way, recalling the definition of vp|,,, we get

. . . . . 1—
(im0t )) + (i, = ma(ut)) = (w1 = o) =2 e )
Yi

i i
up + U, vp|,,

= () - (L - )
vi

K3

y—1+h i l—y l—y
P (0 ) S 0 )

= uj +ug, (1)
Vi
-y
oy

7

= up—m(uh) +ul (1—hy)
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since ulcy(l) = —ub(1).
Finally, we notice that by definition of the H'/2-seminorm,

o nglg, o PRI -0 -0

L1 —hy)—= = Y déd

|ucy(1 h%) h% |1/2,fy h’?y y |§_77|2 677
Jug, (1= hoy)?

— |u%(1) |2672a2(mi,1)h7i/5.

73

(4.48)

We are now ready to bound IV. For any ¢ € IN, by the triangle inequality, (4.48), (4.39)

and (4.28), we have

2

(2
+ |uzc|l/2,’yi>

= 1 ()2, + s (1) 202000l 2, )

1/237i

having chosen ¢ > 2 and using h > ce. Similarly,
m—1
Yo Muas(@i, ) —vp(@i ),
i=1
m—1 ' )
<O (W bl + 27 )
i=1
< C(h? +€%) < Oh2.
Thus we have shown that
IV < Ch%

Finally, recalling from [87] that the streamline derivative of the error

- V(u — ug)v dQ
la-V(u—ud)||-1,0:= sup Joa-V(u=udv
vEH() [v]1,0
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is controlled by the energy norm error, in the sense that
h2la - Viu —ug)||-10 < O lu— uql1,0,

we deduce that (4.43) holds. O

Remark. The error bounds stated in the theorem are still valid as long as the number
of edges crossed by the characteristic curve through (0,0) is of order O(1/h), which is true
under the hypothesis that a;,a2 > 0. In the absence of this assumption and requiring that
f € WL(Q) we obtain, by virtue of (4.45),

V2 u —uglio +h Ve V(v — )| 1.0 < C1 (51/%*1/2 + h1/2) + Cyh.

Corollary 4.3.8 Let u € H}(Q) be the solution of the boundary—value problem (4.9) and let
urrpB € Vrrp be the numerical solution given by (4.4). Under the hypothesis of Theorem 4.3.7,
we have

61/2|U — Ugli0 + h71/2||a - V(u —ug)||-1,0 < C1 max (61/2h71/2, 61/4> + O, (4.49)

Proof. The proof of Theorem 4.3.7 can be repeated for the RFB method, with the only
difference that, since no edge bubbles are included in the RFB finite element space, when
bounding IV, we have Vp =V}, on every edge v € I'y,.

In this case, to bound IV we proceed as follows. Since the first derivative of ugs is very
large within boundary layers, it is not advisable to make use of the standard bounds on the
error in the Lagrange linear interpolation to estimate (uqs — vp)|y when y € T'y;. Instead, we
shall simply apply the triangle inequality and bound each term individually.

As before, let us concentrate on the boundary layer associated with the boundary y = 1.
For each edge v; = z; x [1 — h,, 1], i =1,...,m — 1, we have

1—
UP|7i = u0($i7 ]‘ - h'%) h’y y’

i

(cf. (4.46), which applies to the RFBe method). By recalling the definition of the seminorm
|- |1/2,%-, we easily see that

(cf. the proof of (4.48)). Of course, an analogous result holds on the edges adjacent to the
boundary x = 1. Thus, writing uss — vp = ug — vp + U, applying (4.36), (4.13) and (4.33) we
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obtain:
2 2 2 2

€ Z |uas - UP|1/2;7 < 3 Z (|U’0|1/2,'y + |UP|1/2,7 + |UC|1/2,7)

yELY; YELy
< 3 Z (Chy, +C + h;i1||uc||%,7 + [uel1yluello,y)

Y€l Y

< ofen 1 Y s+ S il

YELY YELY

< Ceh™L.

Similarly, for the Lo—norm term we obtain

> Muas —wplli, < 33 (lluollS, + lloplly, + lluellf )

~vEly; Y€y
< Y b+ Y i,
~YET Y, YEL Y
< C(t+erh)<C

Thus, for the RFB method,
1V < C, (4.50)

in contrast to IV < Ch for the RFBe method. O

We conclude this section with some comments. The correct choice of the value of edge
bubbles on the edges that intersect the boundary layer is hinted by the error analysis. In
particular, the value on any such edge is chosen to be equal to the boundary layer correction
term in the asymptotic approximation of the solution while bounding the error u,s — vp. This
choice resulted in the O(h) term in the error bound (4.43).

In the context of convection—diffusion problems, we say that a method is uniformly conver-
gent of order o with respect to some norm || - ||c (which may depend on ¢), if an error bound
of the form

|lu = uplle < OB,

holds for some positive constant « that is independent of € as h — 0. In the pre-asymptotic
regime, when ¢ < h, we observe for the RFBe method that /elu — u,|10 < Ch, with C
independent of ¢.

It is interesting to note that all methods studied in the literature that achieve uniform
convergence on shape regular partitions are based on the use of ad—hoc exponential basis
functions (see [82], pp. 273-8). In particular, we refer to the conforming methods in [78] and
[90] and the non-conforming method in [2]; the methods involve exponentially fitted splines
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in the definition of the trial and test spaces, constructed as tensor products of solutions of
the restriction of the original equation on the edges of the triangulation. They all achieve a
uniform rate of convergence with & = 1/2 in the \/e-weighted energy norm.

The method by Schieweck [90], similarly to our method, considers basis functions con-
structed using exponentials only on those edges which cross the boundary layer. Elsewhere, it
uses a standard bilinear approximation. Schieweck proves that, for his method,

e~ unlia < C (/M) + B11?)

Our method can be seen as a combination of the residual-free bubble method with exponential
fitting on edges contained in the boundary layer.

We know from the local a priori error analysis of Sangalli [85] that, for e < h, away from
the boundary layer region, the RFB method is also O(h) accurate in the energy norm. The
error bound (4.50) suggests that an identical result does not hold in the energy norm on the
whole of €2, unless the approximation properties in the layers are improved. Moreover, we have
identified the inferior approximation of the boundary layer behaviour along the edges of the
triangulation as the main source of the inaccuracy of the RFB method. This observation will
also be confirmed by our numerical experiments.

Figure 4.2 may help to clarify why refining the mesh need not improve the accuracy of the
RFB method in the pre-asymptotic regime of ¢ < h. The plots show the RFB approximation to
the solution of the boundary—value problem described in Example 2, page 85, on two subsequent
uniform meshes. The lengths of the edges crossing the boundary layer are halved as we half
the mesh size, but the number of such edges is doubled. Hence convergence is impeded until
the mesh starts to resolve the boundary layer.

This argument, of course, can also be seen as further evidence of the advantages of ani-
sotropic mesh refinement. Indeed, returning to the bound (4.50) on term I'V which does not
imply convergence of term IV to zero under mesh refinement, we see that this is due to the
fact that

Z hy; = hy, #(Lr).

YELw

Hence, on a succession of anisotropically refined meshes, graded in the normal direction to the
boundary layer, we achieve reduction of h,, (whilst keeping #(I'y;) fixed), and hence we should
expect improvement in the accuracy of the solution even in the pre-asymptotic regime.

4.4 Full discretisation and numerical examples

As discussed in Section 2.2.1 and at the beginning of this chapter, one can consider different
splittings of Vrrp, the only constraint being that each element of Vrxrp must be linear on
every edge of the partition.
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Figure 4.2: The RFB solution of the problem of Example 2. The problem parameters are
e =102, a = (cos(n/4),sin(n /4)).

For each v, € V}, we define v, € Vgrp such that
{ vy, — v € By, and

(4.51)
,C(’l~)h,1)b) =0 Yo, € By,

In this way we construct a new subspace ‘711 which coincides with the space V; as defined in
(2.20). Moreover, we still have

Verp = Vi ® By,

which again leads to the augmented space formulation discussed in Section 2.2.1. Similarly,
Vo = Vi ® E, ® By, where, this time, V;, ® E;, =V}, and the unique solution of (4.17) can be
rewritten as u, = up + Ue + u,{ where, as we have seen in Section 2.2.1, u{: is the solution of

E(ul’f,vb) = (f,vp) Yo, € By,

Equivalently, u{:|T = by for any T' € T}, where by solves (4.21). Further, testing with wy, €

Vi, ® E;,, we have that @), + u, satisfies

L(in +ue,wn) = (fywn) = > Lbr,wn) Yy € Vi & By, (4.52)
TET,
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which is equivalent to (2.23).

The formulation (4.52) is similar to the multiscale finite element method (MFEM) defined
in [59] for the solution of symmetric elliptic problems, enhanced by edge bubbles. The MFEM
method (see Section 2.5) is a Galerkin method in which the local basis functions are defined by
solving boundary value problems for the original equation. In our case, given an element T € T},
and letting {¢;}}_; be the standard bilinear basis functions related to T, the corresponding
basis functions {@;}}_, for the space V, are obtained, according to (4.51), by solving, for
1 =1,2,3,4, the local boundary-value problems

@i € HY(T) such that
L(pi,vp) =0 Vo, € Hy(T) (4.53)
Tr(@;) = @i on JT.

Since the basis functions have to be evaluated numerically, the algorithm is, clearly, of a
two-level type.

We have chosen to use the formulation (4.52)-(4.53) as the starting point for the full discreti-
sation of the method. Once more, we would like to stress the fact that the two formulations,
(4.22) and (4.52), are equivalent (more on this in Section 2.5). Moreover the two approaches
involve the same number of subgrid computations. Nevertheless, we have found that the for-
mulation given by (4.52) is simpler to code and results in slightly faster computations.

In order to solve the boundary—value problems that define the basis functions of V,, we need
to introduce a subgrid. We do so by considering a sub-partition Ty of the original partition,
where N is the discretization parameter of the new partition. The restriction of 7Ty to any
element T' € T}, defines a partition of T' that we use to solve the problems (4.53), (4.21) and
(4.15) which define, respectively, the local basis for the space I~/h, the bubble related to the
forcing term and, finally, the edge bubbles.

Accordingly, on selecting V'V as the bilinear finite element space over Ty, we define:

1. the discrete counterpart of the bubble space (4.3) as
BN =B, nVvV;
2. the space of edge bubbles as the subspace of V'V given by
EN :span{eé\], j=1,...,N} c V¥,

where eé-v is obtained by solving in V'V the boundary value problem (4.15). The relevant
boundary conditions (i.e. the value of the edge bubble on the edges) are defined as the
piecewise linear interpolant of the solution to (4.14);

3. the discrete counterpart I~/hN of I~/h as
span{@Y,i=1,...,4} VT €Ty,

where g = @N’T is the solution in V¥ of (4.53) on T € Tj.
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The fully discrete RFBe space is then defined as
VN =VNoEN @ B,

and the fully discrete RFBe formulation reads

find ul € V.V such that
(4.54)

Llug,v)) = (f,o)) Vo €V,

a’ra

and can be again rewritten in the form (4.52).

The analytical study of the size of the additional error due to the introduction of the
subgrid (subgrid discretisation error) in the fully discrete formulation (4.54) does not appear
to be straightforward; the main difficulty being that Lemma 4.3.5 is no longer applicable at the
fully discrete level. Thus, we shall assess the impact of subgrid discretisation on the accuracy
of the method through numerical experiments.

4.4.1 Numerical examples

We now present some numerical experiments, carried out in MATLAB, using the formulation
(4.54) in order to validate the a priori error analysis and assess the size of the numerical error
due to the discretisation at the subgrid level.

Example 1. We consider the boundary—value problem

{ Lu:=—cAu+a-Vu=f infQ,

u=g on 01,
where
(14 cos(bmz)) ify=0
o 3—2xy(1,1); f=2 g= %(1+cos(37ry)) if z=0
0

otherwise;

see Figure 4.3 for a sample solution corresponding to € = 1/50.

We solve this model problem on a sequence of uniform meshes using both the RFB and the
RFBe methods. For each computation, the subgrid mesh is axiparallel and of Shishkin type
with turning point A = csé In N and the same value of the Shishkin parameter ¢, = 1/4; see
Appendix A.2 for more details regarding Shishkin meshes.

We wish to confirm the a priori bounds on the energy-—norm error both in terms of the
mesh size h and the diffusion parameter €. In order to do so, we need to ensure that the
subgrid computations are accurate enough.

Figures 4.4(a) and 4.4(b) show the global error in the /e-weighted energy norm for a fixed
mesh size but different values of the subgrid mesh parameter N for, respectively, e = 1/50 and
e=10""2
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Figure 4.3: Example 1. Solution on a 32 x 32 uniform mesh, ¢ = 1/50.

We notice that a substantial reduction of the error is obtained just by refining the subgrid,
until the macro discretisation error becomes dominant and refining the subgrid thereafter yields
no improvement in the overall accuracy. This happens later for smaller values of € and h. For
instance, for ¢ = 1072 and h = 1/16 (see Figure 4.4(b)), we initially observe the characteristic
N~'log N convergence rate on Shishkin meshes (see Appendix A.2), showing that the subgrid
discretisation error dominates the overall computational error in this case.

Based on such computational evidence, we may infer that the error bound for the fully
discrete method should include a term proportional to the error in the numerical approximation
of the elemental basis functions. This would be in accordance with the findings of Sangalli [87]
on a different augmented RFB formulation applied to a symmetric problem. (For the problems
considered in [87], Sangalli’s argument is applicable to our method as well).

The convergence in terms of the mesh parameter A is shown in the loglog plots of Figure 4.5.
Since we do not have at hand the exact solution, the error is evaluated using a reference solution
given by Richardson extrapolation using two numerical solutions obtained on Shishkin—type
meshes with, respectively, 256 and 512 nodes in each coordinate direction.

The RFBe solution initially converges to the reference solution with rate 1. As we keep
refining, the slope of the error curve changes sign (the rate becomes approximately —1/2) until
the error curve joins the corresponding error curve for the RFB method. See also the rates are
listed in Table 4.1). These are defined by confronting two successive results as follows. Let ey,
and ey, be the errors recorded by solving with mesh sizes h; > ha. Then the rate is given by
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Figure 4.4: Example 1. y/e—weighted energy norm error as a function of N.
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Figure 4.5: Example 1. /e-weighted energy norm error as a function of A: RFB method and

(a) Error vs. h, e =1/50

RFBe method with N = 64 (RFBe(64)).
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| e=1/50 e =102

h Energy | rate Lo rate Energy | rate Lo rate

1/4 0.363 0.141 0.337 0.17
1/8 0.174 1.06 0.043 1.7 0.152 1.14 | 0.051 | 1.73
1/16 0.074 1.22 0.011 | 1.92 0.064 1.24 | 0.0138 | 1.89
1/32 0.083 | —0.15 | 0.0042 | 1.43 0.038 0.74 | 0.0036 | 1.93
1/64 0.11 —0.41 | 0.0025 | 0.77 0.08 | —1.05 | 0.0025 | 0.53
1/128 0.091 0.28 | 0.00103 | 1.28 0.109 | —0.45 | 0.0017 | 0.55

Table 4.1: Example 1. Error and convergence rate for RFBe(64).

the exponent a € R satisfying the equality

e _ (E)a
€hy h2 .

The relatively inaccurate results obtained when h ~ ¢ are easy to explain. The region {2,
i.e. the union of the elements enriched with the edge bubbles, is properly contained in the
boundary layer region, hence part of the boundary layer behaviour cannot be accurately cap-
tured. Eventually, the mesh is fine enough to resolve the layer, and the asymptotic convergence
rate of the method is then recovered.

As for the subgrid computations, we have used the value N = 64 (hence the notation
RFBe(64)). As we see from Figure 4.4, this choice ensures that the subgrid discretisation error
is of higher order. For smaller values of € we can still identify the rate of convergence predicted
by the a priori analysis; see Figure 4.6(a).

As regards the Lo—norm error, not covered by our theorem, the RFBe method seems to
be second-order ‘convergent’ in the preasymptotic regime when ¢ < h. The local a priori
analysis of Sangalli [85] predicts the same rate of convergence for RFB in the outside region.

So far we have not taken into account computational cost. The RFBe method is computa-
tionally more expensive then RFB on the same triangulation since it involves a larger number
of degrees of freedom, and because the extra d.o.f., the edge bubbles, need to be computed.

Assume, for example, that the triangulation is uniform with n x n elements; the number of
edge bubbles is then 2(n — 1), while the total number of d.o.f. is of O(n?). Moreover, assume
that the basis functions (4.53) are calculated using a 4 x 4 subgrid, as in all computations
presented so far. As for the edge bubbles, we are free to consider finer subgrids. We then have
a range of possible scenarios. If, for example, the edge bubbles are also computed on 4 x 4
subgrids, the computational times for the two methods (RFB and RFBe) are almost identical.
On the other hand, if relatively fine subgrids are used for the edge bubbles (32 x 32 in our
example below), the CPU time is dominated by the computation of the edge bubbles, hence
RFBe becomes much more expensive.
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Figure 4.6: Example 1. Error as a function of h for different values of : the RFB method and
the RFBe method with subgrid discretisation parameter N = 64 (RFBe(64)).

Nevertheless, since the boundary layer is a major source of error, the RFBe method can be
more effective even if the edge bubbles are calculated with high precision. This is particularly
true if we require a certain accuracy in the energy norm of the solution. In the Table 4.2, we
compare the computational time required by a sequential code implementing the RFBe(32),
RFBe(4), RFB methods and a standard Galerkin finite element method to compute the solution
to a fixed tolerance (TOL) in the y/e-weighted energy norm, for ¢ = 10~2. (The procedure
would be speeded up through parallelisation of the subgrid computations). The table reports
the CPU time in seconds on a Pentium III 800 MHz processor; the corresponding number of
elements on each coordinate direction is given by the numbers in square brackets. We have
left the entries of the table blank if to achieve the required accuracy a resolving mesh was
necessary, i.e. if n > 100.

We notice that the RFB and Galerkin methods are unable to provide reasonable accuracy
in the energy norm on unresolving meshes. This situation would become even more evident if
we were to consider problems with smaller values of €. Having said this, the accuracy of the
RFBe method on unresolving meshes is also limited albeit to a much lesser extent than the
accuracy of RFB and standard Galerkin methods (cf. Figure 4.6).

Similarly, Table 4.3 reports the computational time to achieve a fixed accuracy in the
Lo-norm, for e = 1072, 1073 and 10~

Again, the RFBe method is the most effective in almost all the cases considered, in partic-
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TOL || RFBe(32) | RFBe(4) | RFB Galerkin
1/2 |[6 3] |22 [10] |77 [68] | 14 [94]
1/5 || 16 [7] 59  [58]
1/10 |[ 46 [18]

Table 4.2: Example 1. Computational time (in seconds) to achieve, on a uniform mesh, a given
accuracy (TOL) in the \/e-weighted H'-norm. We indicate in square brackets the number of
elements used in each coordinate direction on the global uniform mesh. RFBe(N) indicates
that an N x N subgrid was used for computing the edge bubbles. A 4 x 4 subgrid is used to
compute the RFB (internal) bubbles in each case.

ular for the smaller values of e. More precisely, we notice the following:
1. For RFBe(32), the evaluation of the edge bubbles takes almost all the CPU time.

2. While this is the case, the growth of the computational time is roughly linear, while the
method is converging quadratically (again, see Figure 4.6).

3. On the other hand, the computational cost of all the other methods considered grows
quadratically, while their rate of convergence is less then quadratic.

Hence, as the tolerance becomes tighter, the RFBe(32) method requires a smaller amount of
CPU time than the other methods.

Finally, we remark that the mesh used to evaluate the basis functions (the internal bubbles if
we think in terms of RFB) could also be adjusted. The presence of the edge bubbles improves
the stability of the RFB method (as we shall show in the next example), hence the same
accuracy in the outside region can be achieved using poorer approximation to the internal
bubbles. If we switch off the bubbles in the outside region, we obtain a method similar to the
locally exponentially fitted finite element method in [90]; if no other layers are present (as in
this example), this yields almost as accurate results as the full RFB method.

Example 2. We solve the boundary value problem with constant coefficients

(4.55)

—eAu+ (cos(Z),sin(%)) - Vu=1 inQ=(0,1)%
u=>0 on 0f).

In Figure 4.7 we see the numerical solution obtained by using an RFBe method on a uniform
mesh with A = 1/4 and € = 102 as a sum of its components in the spaces By, Ej and V},.

The convergence in terms of the mesh parameter A in the \/e—weighted energy norm for
e = 1072 is shown in Figure 4.9. As for the subgrid computations, we have used axiparallel
Shishkin subgrids with N = 20 and N = 4 and the Shishkin parameter ¢; = 1/2.
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e=10"*
TOL || RFBe(32) | RFBe(4) | RFB Galerkin
1/5 |[14 [5] |1 (6] |LL [8] | 272 [200]
1/10 |[26 [9] |22 [10] | 14 [30]
1/50 || 52 [20] | 105 [78]
1/100 || 92 [28]

| e=10"" |

TOL || RFBe(32) | RFBe(4) | RFB Galerkin
1/5 || 14 [5] |1 [6] |18 [10] |5 [62]
/10 |22 8] |2 [9] |17 [32] |32 [120]
1/50 || 49 [19] |39 [46]
1/100 || 71 [26] | 124 [84]

=107
TOL || RFBe(32) | RFBe(4) | RFB Gal
1/5 || 6 [3 |06 [4 |1 [6 |03 [17]
1/10 |[14 [6] |1 [6] |2 [16] |08 [2§]
1/50 || 35 [14] | 4.5 [15] |52 [56] |7  [74]
1/100 || 52 [20] |9 [22] | 137 [90] | 21  [106]

Table 4.3: Example 1. Computational time (in seconds) to achieve, on a uniform mesh, a given
accuracy (TOL) in the Ly—norm. We indicate in square brackets, the number of elements used
in each coordinate direction on the global uniform mesh.

We notice that, for this problem, the error is almost completely concentrated in the bound-
ary layer, so mesh refinement, particularly in the outside region, is of secondary importance in
the regime h > €.

In contrast with this, as can be seen in Figure 4.9(b) which reports the error in the outside
region Qy,; = (0,1 — k)2, the accuracy of the RFBe method away from the boundary layer is
largely independent from that of the subgrid computations. As long as ¢ < h, the numerical
solutions obtained by using the RFBe method are more accurate than those delivered by the
RFB method: the edge bubbles have the effect of eliminating the over— and under—shooting
near the boundary layer typical of RFB (and of most stabilised finite element methods). This
can be seen by comparing Figures 4.2 and 4.7.

A similar result was obtained by Mizukami and Hughes [75] with their shock—capturing
method which has the additional property of satisfying the discrete maximum principle. Ex-
ample 4.1 in [75] (f = 0, @ = (cos(n/6),sin(r/6)), ¢ = 10~7 and homogeneous Dirichlet
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Figure 4.7: Example 2. The RFBe solution of the boundary value problem (4.55) on a 4 x 4
uniform mesh for € = 10~2. The bubbles are computed using a 8 x 8 Shishkin subgrid.

boundary conditions at z = 1 and y = 1; Dirichlet boundary condition u = 1 otherwise) high-
lights the problem of over— and under—shooting near the boundary layer. The RFBe solution
to this problem is nodally very accurate; see Figure 4.8.

The energy norm error of the numerical solution of (4.55) for different values of € on a fixed
uniform mesh of size h = 1/8 is depicted in Figure 4.10(a). For small values of ¢, since we
cannot afford to use very fine subgrids, the error due to the approximate computation of the
bubbles is dominant. On the other hand, the lower bound on the error given by the error in
the outside region, which is largely independent of the subgrid size, permits us to confirm the
a priori bounds (see Figure 4.10(b)).

We have verified that the overall accuracy is improved by the introduction of the edge
bubbles. The method achieves both an increased local resolution and a global improvement in
accuracy in comparison with RFB (see Figure 4.9).
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(a) RFB solution (b) RFBe solution

Figure 4.8: Solution of Example 4.1 in [75]: f = 0, @ = (cos(n/6),sin(7/6)), ¢ = 10~ and
Dirichlet homogeneous boundary conditions at z = 1 and y = 1; Dirichlet boundary condition
1 otherwise. The edge bubbles were computed using an 8 x 8 subgrid.
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Figure 4.9: Example 2. \/e-weighted energy norm error as a function of h.
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Figure 4.10: RFB and RFBe y/e-weighted energy norm error on a uniform mesh of size h = 1/8
for different values of €.

In practice, the bases for the bubble spaces must be evaluated numerically by introducing
a subgrid. Since the edge bubbles are not eliminated via static condensation, one may be led
to think that the method should be quite sensitive to the accuracy to which the numerical
solution is to be computed. In fact, this seems to be true only inasmuch as accuracy within
the layer is concerned, as we can see by comparing the plots of Figure 4.9(a) and (b).

Remark. In general, we may not know a priori where the inclusion of the edge bubbles is
required. Thus, we believe that the RFBe method should be thought of as a corrector in an
iteration whose predictor is the RFB method, followed by a loop of a posteriori error estimation
aimed at locating elements where edge bubbles need to be inserted; work in this direction is

in progress and will be discussed in Chapter 5.

We conclude with an example taken from [22] and with a remark concerning the application
of the RFBe method to problems that exhibit internal layers.

Example 3. We solve the boundary value problem considered in [22] using the RFB
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method:

—eAu + (cos(n/3),sin(r/3)) - Vu=1  inQ = (0,1)?

< =
u=1 for{ r<1/2,y=0 (4.56)
z=0

u =0 otherwise.

This problem is not covered by our analysis: because of the presence of an internal layer, the
asymptotic approximation we used does not satisfy (4.31). Still, the RFBe results show a
considerable improvement over the results obtained by the RFB method.

The solutions obtained by means of the RFB and RFBe methods on a uniform mesh with
h = 1/20 for ¢ = 10~ are shown in Figure 4.11. We notice that the oscillations near the
boundary layer and the spike in the corner layer present in the RFB solution are absent from
the RFBe solution. This highlights the fact that such undesirable features of the RFB method
are due to poor resolution of the boundary layer on the skeleton of the triangulation.

On the other hand, no visible improvement over the accuracy of RFB is obtained along
the internal layer propagating from the point of discontinuity in the boundary condition. One
would expect that carefully chosen edge bubbles defined near the layer itself will eliminate this
numerical inaccuracy.

4.5 Closing remarks

We have shown how a small number of edge bubbles can be defined to improve the resolution
of boundary layers of the RFB method in the context of convection-dominated convection—
diffusion problems.

The resulting scheme has better accuracy properties then RFB in the regime ¢ < h. In-
deed, both our a priori error analysis and our numerical experiments show that on coarse
meshes the RFB method shows little or no improvement of accuracy in the energy norm, while
RFBe exhibits the optimal asymptotic rate of convergence in the energy norm on €2; in the
pre—asymptotic regime £ < h standard RFB is only capable of reproducing the same level of
accuracy as RFBe only away from the layers.

Moreover, we have noticed that, although we are acting locally, the RFBe scheme exhibits
increased accuracy globally, indicating that the introduction of the edge bubbles has a stabil-
ising effect. More precisely, our method, similarly to the shock—capturing method presented in
[75], shows no over— and under—shooting near the boundary layer. The observed improvement
is obtained robustly with respect to the subgrid size and hence at (almost) no extra computa-
tional cost.

Another characteristic feature of RFBe is that accuracy inside the boundary layer region
is sensitive to the accuracy to which the edge bubbles have been computed; thus, only if high
precision in such region is required, should one consider performing expensive and accurate
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(a) RFB (b) RFBe

Figure 4.11: Example 3. Solution of a problem with an internal layer on a uniform mesh of
size h = 1/20. The problem parameters are ¢ = 10°%, @ = (cos(n/3),sin(n/3)); as for the
subgrid, a Shishkin mesh with N = 4 has been used.

calculations of the edge bubbles.

Following the ideas of Brezzi & Marini [25], we presented the RFBe method in a general
form, suggesting that other multiscale problems for which the fine scale features are only lo-
cally present may benefit from the introduction of edge bubbles. The principle is that we are
ready to afford the introduction of only a small number of new degrees of freedom; hence, for
the procedure to work efficiently, we must assume that it is known a priori where the bubbles
have to be added. The a priori information may be obtained from previous computations
with, or without, the use of aposteriori error bounds (see the next chapter and in particular
Section 5.4).



Chapter 5

A posteriort error estimators and
RFB

This chapter is devoted to the a posteriori analysis of the RFB method in its generalised
Galerkin (or stabilised) formulation (2.11). The efficiency of an adaptive mesh refinement
algorithm based on the obtained a posteriori error bounds is also discussed.

Previous results have been obtained by Russo [84] and Sangalli [86] specifically on the
subject of a posteriori evaluation of norm error.

Here we consider both linear functional error evaluation and norm error evaluation. In both
cases, we find that the a posteriori error bound is composed of three terms: the two classical
residual-based terms of the Galerkin formulation (internal residual and boundary jump of the
gradient), as well as a third term due to static condensation of the bubbles.

In Section 5.4 we propose to use the relative magnitude of such terms to explore whether the
bubble (stabilisation) can be phased off locally. A new hb-adaptive algorithm is studied: the
idea is to turn off the bubble locally (b—derefinement) while refining the mesh (h-refinement).
We investigate the robustness of the algorithm through numerical examples.

5.1 A posteriori dual-weighted error bounds

Our aim is to combine the use of the RFB method for the numerical solution of boundary
value problems for convection—dominated convection—diffusion equations with mesh adaptation
techniques.

Let us consider the convection—diffusion operator

Lu := —eAu+a - Vu,

where ¢ is a positive constant and the velocity field a € LOO(Q)2 is divergence-free in an
open polygonal domain © C R2. Given a function f € Lo(Q), we consider the associated

91
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homogeneous boundary-value problem in variational form

find u € V such that
L(u,v) = (f,v) Yo eV,

where V = H}(Q) and the bilinear form L(-,-) is defined on V x V as
L(w,v) = 6/ Vw - Vvdz +/ (a-Vw)vde.
Q Q

It is often the case that the quantity of interest is not the solution u itself but a linear
functional u — J(u) of the solution (e.g. a point value, a flux, an average, etc.). A posteriori
bounds on the error J(u) — J(up), where uy, is the computed solution, can be obtained through
duality arguments. Here we assume that

J(u) = (u7g)7 g€ LQ(w)7

leaving the treatment of other linear functionals such as fluxes through a Neumann boundary
to a later example.
We define the following dual problem:

find z € V such that
(5.2)

L(w,z) = J(w) Yw e V.

The (adjoint) differential operator involved in (5.2) can be recovered from (5.2) through inte-
gration by parts; for the partial differential operator L under consideration, it will be found to
be defined by

L'z := —eAz—a -Vz zeV.

We shall perform such an a posteriori error analysis for the RFB method seen as a gen-
eralised Galerkin approximation for the polynomial part of the solution. That is, we assume
that static condensation of the bubble part of the solution has been performed resulting in a
stabilised finite element approximation on the given piecewise polynomial space V} and trian-
gulation Tp; i.e., a formulation which we can write as

find uy, € V}, such that

Llun,vn) + Y (up, Lvp)r = (fyo0)  Yop € Vi
TET

(5.3)

Here, the family of triangulations 7, h > 0, is admissible (conforming) if any two triangles in
Ty, either have a common edge or common vertex, or they do not intersect at all.

In the sequel, we denote by np the unit outward normal vector to 0T defined on the edges
of any element 7. Further, we denote by nr - [Vu,] the jump of the normal derivative of uy,
across the given edge.
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We have

J(u) = J(up) = J(u—up)

= E(’U, — Uhp, Z)
= ;C(’U, — Uh, Z — Zh) + Z (Ub,L*Zh)T
TeT
= Y ((f = Lun, 2 — 21)7 — (emg - Vg, 2 — 2n)orna) + »_ (un, L zn)7
TET, TeT
1
= ) ((RT(Uh),Z =21 = 5 (enT - [Vun], 2 = zn)orna + (u, L*Zh)T>
TET
1 1 2 2 3 3
T (), () (),
TET

having denoted the elemental residual terms by

1
o) = Br(u),  pf = —genr-[Vul,  pf) =w,

and defined the weights

wg):wg):z—zh, wg’):L*zh.

Thus, the error representation formula (5.4) is a sum of three terms: the two classical residual-
based terms and a third one due to the stabilisation term in (5.3). This identity is analogous
to the error representation formulas for stabilised finite element approximations of first—order
hyperbolic problems presented by Houston et al. in [61]. In particular, we will see later
that, when the RFB method is equivalent to the stabilised finite element method considered
by the authors of [61] in the context of first—order hyperbolic PDEs, then the identity (5.4)
corresponds to their first error representation formula for functionals.

We now discuss a mesh adaptation algorithm based on the a posteriori error representation
(5.4).
Given a positive tolerance TOL, the goal is the computation of uy € V}, such that

|7 (w) — J(up)| < TOL. (5.5)

From (5.4) we have that

5 (), + () g+ (68),) |80 09
TETh

|J(u) = J(un)| =

Thus, the constraint (5.5) is satisfied as soon as

&1 (uh) < TOL.
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This will be our stopping criterion.

We now need to choose a refinement criterion, i.e. a marking strategy for the refinement
of the elements in the mesh, and establish a way to actually compute the error representation
formula (5.6).

The design of a refinement criterion is based on the localisation of & (up). Putting the
absolute value sign under the summation sign, we get

T =T < Y (o), + (o) (6w | = D = ),
TeTh TeT,

and a decision as to which elements to refine can now be taken depending on the magnitude
of the local error indicator nr.

There are many possible refinement criterions; see [11] for a review. An optimal strategy,
known as error per cell strategy, would be to equilibrate the local error indicator nr by refining
or coarsening according to the criterion

TOL

nr = )
Nel

where N is the number of elements in the subdivision.

A criterion that may be more suitable if coarsening is not considered, is the fized fraction
strategy in which the elements are ordered according to the size of n7 and then some portion
of those with largest nr is refined. We have chosen to use the fixed fraction strategy proposed
by Papastavrou and Verfurth in their article dedicated to the comparison of a posteriori error
estimators for convection-diffusion problems [79]. The authors of [79] suggest to refine those
elements for which

NT 2 Cret 7],

for some user-selected threshold parameter cf € (0,1); the reference value 7 is taken to be
the maximum of 7y after cutting the upper 10% or 5% of the values (in order to preclude
runaway values). That is, a second parameter pper, usually fixed to 0.1 or 0.05, is defined and
7 is obtained as the maximum of 5y after discarding the |pyefNei| elements with the largest
nr-

Regarding the computation of (5.6), the difficulty is in the evaluation of the dual solution.
Here the dual solution z is computed using a new mesh Tz, different from 7. Given the
finite element space Vi corresponding to 7Tz, and the RFB solution zg € Vi zpp € Vi of the
dual problem (5.2), the approximation zj is taken as the projection or the interpolant of the
computed zy from the primal finite element space.

We reconsider the error representation formula (5.6). By decomposing

w(TI) = w(TQ) = (2 = zn)ir = (2 — 2n)i7 + (2 — zm) |7 = Or + O,
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we get
-t < | (), + (8) o (0.8,
TETy
+ T%;h Pg}),@T>T+(p¥)’_ >8Tﬂﬂ>‘
= & (up) + & (up). (5.7)

In this way we have isolated in & (uy,) the uncomputable terms of the error bound.

5.1.1 Adaptive algorithm

Let us assume for a moment that £;(uy), i.e. the term depending on the difference z — 2,
is such that & (up) < E1(up). The validity of this hypothesis will be discussed in Section 5.2
below. We then define the new local refinement indicator

nr = ‘(p%”v"N‘)T)T + (p%W&T)@TﬂQ + (p;’“7w%)T‘ VT € Th, (58)

and redefine 7 accordingly. Further, we define the new stopping criterion

~ TOL
E1(up) < Kol (5.9)

for some constant 1 < C < 2.
We may then consider the following adaptive algorithm:

1. Define an initial mesh;
2. Calculate uj; and the dual solutions zy and z, on the current meshes;
3. Check the stopping criterion: IF 5~1(uh) < TOL/C then STOP;

4. Apply the refinement criterion: refine those elements T' whose local error indicator nr
exceeds cpefr] and GOTO 2.

5.1.2 Approximation of the dual solution

To ensure that the stopping criterion (5.9) is reliable, i.e. that the approximation error is
below the given tolerance, we need to control the size of & (uy,). To this end, we observe that
the global-residual

R(up) : v — (f,v) — L(up,v),
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is a bounded linear functional in V. Hence, returning to (5.4), we see that we can write the
term &1 (up) as

Lu—up,z—2zy) = Llu,z—2zg)— L(up,z2—21)
(f,z—zm)a — L(up,z — zf)
= (R(un),z — zn), (5.10)

where (-,-) is the duality pairing between V and its dual space V'. We now notice that the
right—hand side in (5.10) defines a new linear functional

N(v) = (R(un),v).

Thus, we can estimate the error terms in &£ (uy) by performing an a posteriori analysis of the
error N(z) — N(zp); for this purpose we consider the dual of the dual problem

find ¢t € V such that
(5.11)

L(t,v) = N(v) Yv e V.
Let tg € Vi be some approximation of . We have

N(z) — N(zg) = N(z — zn)
= L(t,z — zm)

= L(t—tg,z—zm)+ Y (Ltm,z)x
KeTy

= > ( (t —tm, Rx(zm)) g — %5 (t—ta,ni - [Vzrl)oxno + (Lta, Zb)K)
KeTy

where, as before, the elemental-residual is defined as Rx(zn) = (g9 — L*zn)|k. Finally, 2
represents the bubble part of the RFB solution to the dual problem.

The new error representation just obtained is in terms of ¢ — ¢t which is just as uncom-
putable as z — zy. To avoid a possibly infinite sequence of duality arguments, we bound ¢ —ty
in terms of a stability constant. The bound obtained in this way need not be sharper then
the one we would obtain if instead we were to bound z — zy directly as was done by Eriksson
et al. in [41] and [42]. From the practical point of view, though, the crudeness of the bound
of £1(uy) is not of particular concern since all we need & (uy) for is to generate an adequate
sequence of finite element approximations zy which we can use to compute gl (up).

From now on, we assume that linear finite elements are used, so

Vi={p€eC):plxk €P1 VK €E€Tu},

and assume that for any triangulation 7z and any element 7' € Tz the number of neighbours
of T' is bounded.
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We choose tg = Pgt, where Py is the modification of the quasi—interpolation operator of
Clémant [35] analysed by Verfiirth [95]. With this choice we can take advantage of explicit
interpolation error bounds in terms of the H'-seminorm.

The definition of the modified Clémant’s quasi—interpolant requires the introduction of the
following notational conventions. Let £y and Ny be the sets of all the edges and all the
vertices in Ty, respectively. Further, let

Er =EmnVU&up, N = NuoUNu,p,

be the decompositions of £ and Ny into the subsets of internal and boundary edges and
vertices, respectively. For any S € Ty U &, let N(S) be the set of its vertices; and for any
K € Ty, let £(K) be the set of all faces of K which are internal to €. Finally, for any vertex
z € Ny, denote by w, the union of all triangles which have z as a vertex.

The following definition and bounds can be extended to H%D (Q) for any I'p C 012, essen-
tially by interpreting the nodes sitting on the Neumann boundary 02\ I'p as internal.

Given a function u € Ly(w,) we associate to any 2 € Ny the value

1

TpU = 7
|w$| Wy

The quasi—interpolation operator Py : V' — Vp is defined as follows:

PHU': Z (7‘—1"“') P>

:L‘G/\/’H,Q

where ¢, € V is the finite element basis function associated with x. Notice that Py is not a
projection operator.

Lemma 5.1.1 Forallv eV, oll K € Ty and all E € £y we have

lo = Prollox < Y CxwHalvliw,, (5.12)
zeN(K)

lv — Prvlloe < Z CpaHy*|v|1w,, (5.13)
TEN(E)

where H, is the mazimum length of an edge having x as an end point. The values of the
constants C ., and Cpy, are given explicitly by Verfirth [95] in terms of the following mesh—
quality related quantities

K = max @ K = max |E|HK
3;13 . K1, Ky € Ty |K2|7 4;:D . KeTy Beén |K|
z € N (K1) NN (K2) z € N(K)NN(E)

Moreover, the following bound holds on the interpolation error in the H' —seminorm.:

o= Prolig < ) Chalvlions (5.14)
zEN(K)
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with the constant C}(;x depending explicitly on k3, and on the shape—reqularity of K, i.e. the
ratio ki = Hi [pK between the diameter of K and the diameter of the largest circle inscribed
mto K.

Proof. The bounds (5.12) and (5.13) are due to Verfiirth, see [95]. We prove (5.14) by
adapting Verfiirth’s proof of (5.12). To start with, (5.14) is to be shown for an operator which
does not need to satisfy the Dirichlet boundary conditions. That is, a new operator Py, a
modification of Py, is defined as

Prpu = Z (Tpt)Pg.

:DENH

Fix an arbitrary K € Kp. Since ), .y (x) ¥z =1 on K, we have

HV(U - pHU)HO,K

Z ((u — mu)Vpr + (Vu)py)

< Y IVerlloxllu = meullog + D leellooxlVullox
2eN(K) 2eN(K)
K
< Z H—II((HU_MU 0,k + Z Vullo k- (5.15)
zEN(K) zEN(K)

We have now reached the point at which this part of the proof follows that of (5.12) given
in [95].
The following result is Lemma 4.3 in [95]: for any € Ny and v € H'(w,) we have

lu — Tpu

0,wz < Cxquvu

0,wgz s (516)

where C) is an explicit constant depending on the ratio

H,
Rl = —,
Pz
and p, is the minimum length of an edge having z as an end point (in particular, if w, is
convex, then Cp = 2/m).
Applying (5.16) in (5.15) we obtain the desired result for Pj;.
The proof is completed by bounding the norm of the difference between VPyu and V Pgu:

IV(Pru— Pl = | S muVe
zeN(K)NNu b 0,K
< Z [ maul | Vezllo,x
CEEN(K)QNH,D
12655
< Y ek,

CEEN(K)QNH,D
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We are again within the framework of the proof of (5.12) given in [95]. This time, the proof is
completed by using the following result (equation (5.6) in [95]):

1
wwm%mxs—(

1/2
3 (1) (= moul, + Vo).

| K|

(here K, represents any triangle K with the following properties: z is a vertex of K and K
shares an entire edge with 0€2), and applying again (5.16). O

We are now ready to obtain a computable bound on |N(z) — N(zg)|. By applying the
Cauchy-Schwarz inequality and the interpolation error bounds (5.12), (5.13) and (5.14) after
noting that LPyt = a - VPyt, we have

IN(2) — N(zm)| < Z (HRK(ZH)HO,KHt—PHt||0,K
KeTy
1

+ Isenw - [Vzrllloplt - : K lla- : )

EeE(K)
< Z (HRK(ZH)HO,K Z CK;:vHx|t|1,wz

KeTh zeN(K)

+ > (||—€nK Vzullloe Y, CeuH, /2|t|1,w:c>
Eeé(K zeN(F)

+|

/; ’ ))
zEN(K)

The solution ¢ has now been removed from the bound, but £ is still present. We can eliminate
t as follows, at the expense of breaking up the sum over the elements of the triangulation. Let

CK = xglj\?(}[(()(CK;mﬂl’m)’

Coxk = max max (Cpgk }/2)
Ec&(K) zeN(E) o

Cx = 1+ max Ci,.

zeN(K)
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Then, since the number of neighbours of any T' € Ty is bounded, we get
[N (2) = N(zn)|

1
fé}:(OﬁdﬁﬁRﬂnan+2QWH¥W?mK¢Vthmmm > )
KeTy zEN(K)

+Ck llalloo, i |2sll0,5 Z |t|1,w£>

zeN(K)

§3< Z (CKHK”RK(ZH)HO,K + CaKH%QHE’mK [Vzallloprne
KeThn

1/2
i 2 2 2
+CicllalZ ksl x)” | Ithe.

To quantify |t|; o, we reconsider the problem (5.11) in strong form with forcing term
R(uh) S H_I(Q):

Lt = R(up) in9,
(5.17)
t=0 on 0f).
Multiplying the first equation in (5.17) by ¢ and integrating by parts over €2, we get
R(up),v
(It = (B8 < [Hha sup EL:0)
vev\foy [vl1e
Hence, we have the stability estimate
1,0 <e HIR(un)ll-1,0,
and we conclude that
IN(z) — N(zn)|
< 3( Z (CKHK||5_1RK(ZH)||O,K + C(?KH}(MHTLK . [VZH] 0,0KNQ
KeTy
1/2
+ 710/ 2 2 2 R
e Ckllalls,x 26,5 IR (un)l 1,0

In this way, we have obtained the following computable error bound:

| T (u) — J(up)| < E(un) + Ex(up) (5.19)
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Two remarks are in order. First, the number ||R(up)||-1,0 is not directly computable from
up. We can still compute it, but at the expense of the solution of an auxiliary problem; see
the next section for details. Finally, the derivation of sharp and computable a posterior:i error
bounds is a nontrivial task. Our bound is no exception in this respect: by bounding z — zg
we achieved computability and reliability of the bound, but we anticipate a loss in terms of
sharpness.

In the next section, we investigate the sharpness of the error bound (5.19), and study the
reliability and effectivity of the alternative error estimator &) (uy,).

5.2 Implementation

We experiment with the a posterior: error bound described in the previous section by consid-

ering linear finite elements on triangles for both the primal and dual computations. We have

chosen to define Ty as the triangulation obtained by subdividing every triangle in 7}, into the

four triangles obtained by bisection of its edges. A survey of other possible choices can be

found, for example, in [11]; see also the comments in the review article by Giles and Siili [55].
Let Vj, C V = H}(Q) denote the usual space of linear finite elements

Vh:{QDGC(ﬁ):(,O‘TEpl VTGE},

and similarly for V.

To implement the RFB formulation (5.3) over V}, we need to calculate the bubble part of
the solution up. As we have explained in Section 2.1, this is given on every element T' € T}, as
the solution in H}(T) of the bubble equation

Lrup|lr = (f — Luy)|r,

where Ly : HY{(T) — H(T) denotes the restriction of the operator L to T.

In what follows we assume that, in the evaluation of the bubble term of the RFB formu-
lation (5.3), the velocity field a and the forcing term f can be treated as piecewise constant
functions on 7p: these assumptions ensure that the RFB method is equivalent to SDFEM; see
Section 2.4.2. In this case, the bubble part of the solution of the RFB formulation is given by

upir = (f —a- Vuy)rbr,
where by is the solution of the local problem

—eAbr +a-Vbr=1 inT,
br=20 on O07T.

Thus, for any T' € Ty, as we proved in Section 2.4.2, the static condensation of the bubble
results in the classical streamline—diffusion stabilisation term, since

(ub,L*vh)T = TT(a . Vuh — f,a . Vvh)T,
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where the SD-parameter 71 is defined via the bubble by as

7,
T = T/ dem.
Tl Jr

Moreover, as in Section 2.6, assuming that ¢ < |al, i.e. that the equation is convection—
dominated, we can approximate the integral average of the bubble by by integrating, instead,
the solution by of the reduced problem:

a-Vbr=1 inT,
bTZO OnaT,7

where 0T_ denotes the inflow boundary of T'. Further, let us consider the approximation

- 1 /~ ha
T = — | bpde = ——, 5.20
TR ] b= gy (5.20)

where hq is the length of the longest segment contained in 7" in the direction of a.
The third term in the a posteriori error estimator & (up) defined in (5.7) can be approxi-
mated in exactly the same way, since

(b wi)r = (up, L*20)7 = 70(f — @ Vup, —a - Vzp)r

~ 7r|T|(a-Vup— f)ir(a V).

We notice that the first line above coincides with the third term in the first error estimator for
functionals defined in [61]. That is, in the special case in which the RFB method coincides with
the streamline—diffusion method, our estimator & (up) is identical to that for the streamline—
diffusion method.
Regarding the computation of ||R(up)||-1,0 in & (up) (see (5.18)), we may proceed as
follows. We define the auxiliary problem
{ —A¢ = R(up) inQ,

p=0 on 99). (5:21)

By definition of the norm of the dual space V', we have

(R(Uh)az/))
. o (R(un), )
[ R(un)ll-1,0 ver IVelon
I VX)
= ey IVellog
PeEV IVl

= [|[Vé|on-

Thus, we have reduced the problem of the compuation of |R(up)|-1,0 to that of the com-
putation of [|[Vé|o,q, where ¢ is the solution of (5.21). This will be done approximately, by
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Figure 5.1: Example of red refinement (in red) and subsequent refinement of the neighbours
(in blue). The rule for blue refinement is that the longest edge is always bisected.

considering (5.21) in weak form and solving it by a finite element method on the triangulation
Tr. That is, we will solve the problem

find ¢, € V}, such that
(5.22)

(Von, Vop) = (R(up),vn) = (f,vn) — L(up,vp)  Yop € Vp,

and compute ||V,

0,9-

At every iteration of the adaptive algorithm we need to refine the triangulation, basing
the refinement on the marking strategy described in the previous section. In our numerical
computations we utilise the MATLAB pde—toolbox refinement routine ref inemesh, which per-
forms red refinement on the marked elements. That is, every element marked for refinement
is subdivided into four triangles (sons) by connecting the mid—points of the edges. To avoid
the creation of hanging—mnodes, and hence to comply with the constraint of admissibility of
the triangulations given before, the neighbours of the marked elements are subjected to blue
refinement following the longest edge bisection scheme [83], as shown in Figure 5.1. This tech-
nique is not ideal, since it involves refinement of distant neighbours, but it has the advantage
of ensuring the shape-regularity of the triangulation.

Example 1. We consider the boundary value problem

{ —eAu+uy+uy=f inQ=(0,1)2 (5.2

u=0 in 05,
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10 ammmen 1| E2(un)
—— Ea(up) 105 o E1(up)
= £y (up) " (u) = J* (un)]
— |J(u) = J(un)l —— &1 (up)

Figure 5.2: Example 1. The error and the a posteriori error bounds under successive uniform
refinements with respect to the functional J(-) (a) and J*(-) (b), with ¢ = 1072,

with f defined in such a way that the exact solution is given by
w(z,y) = 2sin(z) y? (1 — e~ (172/) (1 — e~ (1=0)/5),

Our aim is the computation of the mean—flow over €, i.e.

J(u) :/Qud:c, (5.24)

with the aim to ensure that the error does not exceed a given tolerance TOL.

To start with, we compare the true error |J(u) — J(up)| and the a posteriori error bound
(5.19) on successively refined uniform meshes. We recall that the r.h.s. of (5.19) consists of
two terms: &; (up,) which is related to the difference zyy — 2, and £2(up) which is an upper
bound for & (uy) which refers to z — zg.

The results for ¢ = 1072 are shown in Figure 5.2(a): the log-log plot makes it apparent
that & (uy) is over—estimating the true error. On the other hand, the term & (uy) alone agrees
remarkably well with the error, see also the effectivity indices reported in Table 5.1.

In order to conclude that & (up) can be used in an adaptive algorithm as an a posteriori
error bound, we still need to ascertain its reliability, which depends on whether or not & (uy,),
i.e. the omitted term in (5.7), is of higher order.

We can compare & (us) and & (up) for a slightly different problem, in which the target
linear functional is chosen so that the dual solution z is known. This is achieved by performing
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the change of variables (z,y) — (1 — 2,1 — y) in the primal problem. Thus we define
Z((I;ay) = 2Sln(1 — x)(l — y)2(1 _ e*:L‘/s)(l _ e,y/E),

and fix the new target functional J* consequently. The results obtained for this new problem
are shown in Figure 5.2(b). The bound & (uy,) is still over—estimating the error in approximately
the same way as before, while we observe that (except on the coarsest grid) the sharper bound
E1(up) is indeed of higher order than the true error.

We conclude that the adaptive algorithm described in Section 5.1.1, which uses 5~1 (up) as
error estimator, is, for this problem at least, reliable and efficient.

We can further investigate the relative magnitudes of the terms in the a posteriori error
bound by considering separately the three terms comprising gl(uh). Define

Dyes = Z (RT(Uh),ZH _Zh)T )
TeETh
1
Dijump = 9 Z (en - [Vup],zg — z1)7 |,
TET,
Dput = | Y (up, L*zp)y ‘
TeETh

The behaviour of these three terms can be appreciated from the numbers in Table 5.1 and the

h|[J(u) = J(un)| &1 (up) eff Dpupi Dhres Djump Eo(up)
1/4 ] 1.09x 107" | .15 x 1071 | 1.05 | 1.08 x 107! [ 7.5 x 1073 | 5.8 x 107* | 8.88

1/8 | 5.76 x 1072 | 5.91 x 1072 |1.025| 5.8 x 1072 | 1.4 x 1073 | 2.5 x 107* | 4.69
1/16| 2.93 x 1072 | 2,97 x 1072 | 1.01 | 2.95 x 1072 | 3.1 x 10=% | 9.0 x 1075 | 2.187
1/32| 147 x 1072 | 1.48 x 1072 |1.003 | 1.48 x 1072 | 7.7 x 1075 | 2.6 x 107° | 0.917
1/64] 739 x 1073 | 7.4x 1073 [1.001| 7.39 x 1073 | 1.9 x 107° | 6.3 x 1076 | 0.342

Table 5.1: Example 1. Convergence of |J(u) — J(uy)| and & (up) and its components, with
=102

graphs in Figure 5.3. We observe that Dyes and Djunmp are of higher order and the true error
is well approximated by the term Dy alone. Given that Dy, is computable (from wy, and
zp), this fact suggests to use Dy as a correction term by moving it across to the left—hand
side of the error representation formula (this viewpoint is discussed in Giles & Siili [55]). In
other words, the quantity

Jeor(un) = J(up) — > (up, L*z3) (5.25)
TeT;

should give a better approximation to J(u) than J(up). The error representation formula now
becomes:

J(u) — Jeor = L(u — up, 2 — zp).
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10 = [T (u) = J(un)l
—— Dpubl
—— Dres
< Djump
107
107
107
10°
_3 -2 -1 0
1 1 1 1
0 0 h 0 0

Figure 5.3: Example 1. The error and the three terms of the a posteriori error estimator éN’l
under successive uniform refinements with respect to the functional (5.24); ¢ = 1072,

For this we can rewrite the a posteriori error bound in the following form:
|J(u) - Jcor| < Dyes + Djump + gQ(’U,h).

We know already that this error bound is not sharp, due to the third term on the right-hand
side. But, this time the term & (up,) is no longer negligible in comparison with Dyes + Djump
alone. Indeed the quantity Dies + Djump under—estimates the true error, and so it cannot be
used as an a posteriori error bound in an adaptive algorithm.

To show this, we have run the adaptive algorithm described in the previous section, using
the following values of the parameters in the adaptive algorithm:

Cref =5,  Prr=.1,  TOL=107". (5.26)
The results are shown in Table 5.2, for e = 1072 and € = 107%. We observe that:

1. The error estimator & (up,) is very effective in predicting the error J(u) — J(uy), robustly
with respect to ¢;

2. The corrected quantity (5.25) gives, as expected, a considerably better approximation of
the target quantity J(u);
3. Dyes + Djump under—estimates the true error, as indicated by the related effectivity index

Dres + Djump
|J (u) = Jeor (un)|”

eﬁ cor —
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We conclude that the quantity (5.25) is best used as a more accurate approximation of J(u)
after the last step in an adaptive algorithm based on the error estimator & (up,).

Nt | 1(u) = J(un)| | Ei(un) eff [17(4) = Jeor(un)| | Dres + Dijump | effeor
32| 1.095 x 107! | 1.15x 107! | 1.05 | 1.1388 x 1073 8.05 x 1073 | 0.43
69 | 5.667 x 1072 | 5.93 x 1072 | 1.046 | 2.192 x 1073 1.62 x 1073 | 0.27

155 | 2.736 x 1072 | 2.935 x 1072 | 1.073 | 3.038 x 1073 1.05 x 1073 | 0.19

337 | 1.332x 1072 | 1.499 x 1072 | 1.125 3.07 x 1073 1.39 x 1073 | 0.18

779 6.8 x 1073 7.45 x 1073 | 1.097 | 1.071 x 1073 4.09 x 107* | 0.15

1680 | 3.543 x 1073 | 3.87 x 1073 | 1.092 | 6.017 x 10~* 2.74 x107* | 0.14
4644 | 1.995 x 1073 | 2.144 x 1073 | 1.075 | 2.246 x 10~* 7.55 x 107° | 0.06

Net | 1(u) = J(un)| | &i(un) eff [17() = Jeor(un)|| Dres + Djump | effcor
32| 1.119 x 107! | 1.194 x 10~! | 1.067 2.44 x 1073 5.12 x 1073 2.1
69 | 5.825 x 1072 6.2x 1072 | 1.064 | 2.84 x 1073 9.07 x 107* | 0.32

166 | 2.835x 1072 | 3.11 x 1072 |1.099 | 2.94x 1073 1.32 x 107* | 0.045

345 | 1.376 x 1072 | 1.64 x 1072 | 1.192 2.64 x 1073 8.1x 1075 | 0.003

763 | 6.99 x 1073 8.36 x 1073 | 1.193 1.3 x 1073 4.69 x 107° | 0.036

1595 | 3.28 x 1073 41x107% | 1.25 8.41 x 1074 1.93 x 107° | 0.023
3296 | 1.648 x 1073 | 2.03 x 1073 | 1.234 | 3.98 x 10~* 1.28 x 107° | 0.032
6552 | 7.514x107% | 1.02x 1073 | 1.357 | 2.92 x 10~* 2.35 x 1075 | 0.08

Table 5.2: Example 1. The error under successive refinements with respect to the functional
J(u) = [ udz; e =102 (above) and ¢ = 107° (below).

Repeating the same experiment for the modified target functional J* we have observed that
the terms in & (up) are quantitatively comparable to Dyes and Djymp, and hence they cannot
be neglected.

Example 2. We consider the boundary value problem

{ —eAu+uy+uy=f inQ=(0,1)2 (5.27)

u=0 on 092,
with f defined in such a way that the exact solution is given by
u(z,y) = 2zy(1 —e 1D/ (1 — e (170)/E),

Notice that the function w is symmetric with respect to the line z = y.
The objective is the computation of the solution at a given point P = P(xg,yo) with the
aim to ensure that the error between u(xg,yo) and up (o, yo) does not exceed a given tolerance
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Na [ T(u) = Jun)| | Ei(un) [ eff |[ Na [[J@) =Tl [ Ei(un) | eff
32| 212x1072 |9.17x1072 | 4.3 32| 2.58x10°2 |1.28x10°1 | 4.98
64| 2.5x1073 8.7x107% | 3.5 82| 1.02x1073 | 1.13x1073| 1.1

146 1.7 x 1073 2.61 x1073 | 1.5 188 | 3.77x 1072 | 4.61x1073 | 1.2

290 | 8.78 x10°% | 1.24x10°3 |14 378 | 2.14x107% | 6.52x 1073 | 3.04

616 2.1x107* |4.06x107* [ 1.9 708 | 5.08x10°% |2.09x10°3 | 4.1

1396 | 7.43 x107° |1.24x107* | 1.6 || 1262 2.0 x 1074 7.04 x107* | 3.5
2176 | 1.19 x 1074 3.2x107% | 2.7
3858 | 9.39x10°° |282x10*| 3

Table 5.3: Example 2. The error under successive refinements with respect to the functional
J(u) = u((.49,.49)); e = 1072 (left) and € = 106 (right).

TOL. We apply the algorithm described in Section 5.1.1 using the same parameter values as in
(5.26).

The successive meshes produced by the algorithm to calculate the solution at P = (.49, .49)
with € = 1072 and € = 10~° are depicted in Figure 5.6 and Figure 5.7, respectively.

The meshes respect the symmetry of the problem. Moreover, we notice that initially
the mesh is refined down—wind of P: the algorithm recognises that some resolution of the
boundary-layers is necessary in order to ensure any accuracy at the point of interest. In subse-
quent refinement the boundary layer zone is left unchanged, the refinements being concentrated
upwind of the point, along the subcharacteristic curve passing through P.

The effectivity of the a posteriori error estimator & (up) is reported in Table 5.3: the
estimator is robust with respect to the diffusion parameter.

Example 3. We solve the boundary value problem with discontinuous boundary conditions

—eAu + (cos(m/3),sin(n/3))T -Vu=1 inQ=(0,1)2,

<1/2 =
u=1 for{ v<1/2, y=0, (5.28)
z =0,

u=0~0 otherwise.

The solution of this problem has an internal layer propagating across 2 from the discontinuity
in the boundary condition at (0.5,0) € 02. As for Example 1, we defined the target functional
to be the mean—flow in the entire domain ; that is J(u) = [, udx and fixed e = 107%. The
algorithm is again the one described in Section 5.1.1, which employs the computable error
estimator & (up). The values for the parameters in the adaptive algorithm are:

Cref = .D, Pref = .05, TOL = 1073,

As we can see in Figure 5.8, first the mesh gets refined in the boundary layer, which is the
major source of error. Only when the boundary layer has been partially resolved, is the mesh



5.2 IMPLEMENTATION 109

refined along the internal layer, showing that the indicator correctly identifies locations in the
mesh that most affect the accuracy of the approximation of the functional. The final mesh
consists of 7405 triangles, approximately 5 out of 7 of which are located in the proximity of
the boundary layer given by y > 7/8.

Example 4. We consider the mixed boundary-value problem for the convection—diffusion
equation specified in Figure 5.4 (top left). Homogeneous Neumann boundary condition is
imposed on I'y = {(z,y) € I': y = 0or z = 1}, while on I'p = 9Q\I'y a Dirichlet boundary—
condition is given.

The objective is to evaluate the mean—flow over the Neumann boundary. That is,

T(u) = /FNudac.

The corresponding dual-problem is given by

—eAz—a-Vz=0 inQ=(0,1)2
z=0 onl'p (5.29)

en-Vz+n-az=1 only.
This time, the a posteriori analysis proceeds as follows:

J(u) = J(up) = J(u—up)

- E(U — Up, Z)
= ,C(U — Up, 2 — Zh) + Z (Ub,L*Zh)T
TET)

= Z ((f = Lup,z — zp)r — (emr - Vg, 2 — 20)orn@ury))

n=n

+ Z(ub,L*zh)T
TeT
1

= Y ((RT(Uh),z —zn)r = 5(enT - [Vun], z = zn)ornn

TET)

—(enq - Vup, z — zp)ornry + (up, L*zh)T>7

with the new term related to the presence of the Neumann boundary.

The results obtained using the error estimator &, modified to include the Neumann term,
are shown in Figure 5.4. We notice that the refinement is mainly concentrated along the
internal layer in the primal solution, but some refinement is performed where features of the
dual solution are present. This should be compared with the output of mesh adaptation driven
by norm error examined in the next section.
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Figure 5.4: Example 4. Above: problem specifications (left) and mesh after five refinements

(right) for J(u) = fFN udx and € = 1073. Below: The corresponding solution (left) and dual

solution (right).

5.3 The bubble as error estimator

In this section we discuss a posteriori error estimation with respect to the energy norm on

shape regular triangulations.

We consider the following model problem with mixed Dirichlet and Neumann boundary

conditions:

—cAu+a-Vu=f inQ,

u=~0

OIIFD,

en-Vu=g onl'y,

(5.30)

with 9Q =TpNT'y and I'p UTy = (), assuming that T'p is closed and has nonzero measure.
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Let Ty, h > 0 be a family of triangulations of € such that the following conditions hold.

1. Conformity: Any two triangles in 7} either have a common edge or common vertex, or
they do not intersect at all;

2. Consistency: Any triangle—edge lying on the boundary is contained either in I'p or in
I'n;

3. Shape regqularity: For any triangle, the ratio of the largeest circumscribed circle to that
of the smallest inscribed circle is bounded by a constant which does not depend on the
triangle and on h.

As we have mentioned in Section 5.1, the bubble part of the RFB finite element solution
is given element—wise as the function u,|p € HE (T) satisfying

—€Aub|T +a- Vub|T =(f — Luh)|T YT € Tp. (5.31)

Thus, we can bound the Lo—norm of the bubble u; using the following stability result for the
convection—diffusion equation.
Let w be a bounded Lipschitz domain in R? and let w € Hg (w) be such that

{ —Aw+a-Vw=f inw,

w=0 on Jw,
where € > 0, f € Ly(w) and a € (C’l(w))2 satisfies

{ V.-a<0 inuw,

a has no closed integral curves in w.
Then, according to [77], there exist a constant C' dependent only on w and on a such that

e'/2|w

lLw T |w 0w < CHfH&W (5.32)

The following result is mentioned by Russo in [84] where the case of constant coefficients
is treated.

Proposition 5.3.1 Let uy|p € HE(T) be the solution of (5.31). If V-a < 0 and a has no
closed integral curves in T, then

lupllo,r < Chr||f —a - Vuy|or, (5.33)

where C' is independent of € and hr.
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Proof. Upon scaling problem (5.31) by using the transformation A : (z,y) — hp(&,7n) we
deduce that the image of up|r, say @, € Hi(T), where T = A(T), satisfies

€

hTA&b(f,n) +a-Viy(&,n) = hr(f —a-Vup)(z(€,n),y(&,n)).

To obtain (5.33), we scale the stability estimate (5.32) applied to y:

lupllo,r < Chrllasly 7 < Chi||(f —a- Vup) o Aing,f < Chr||f —a-Vuyllor,

where C' depends on a and the shape regularity of 7. O

This result permits us to repeat, for the RFB formulation with linear finite elements, the
a posteriori analysis carried out by Verfiirth [94] for the SUPG method.
From the coercivity of £ we have

L(u—up,v
51/2|u—uh|1,9§ sup %
vev\foy €Y2|v|10

Now let v € V be such that £'/?|v|; o = 1. For any such v we have
e 2y — upli,o < L(u—up,v — Pyo) + L(u — up, Ppv) =T+ I1.

Let &, n be the set of all edges contained in the Neumann boundary I'y. To bound the first
term on the right—hand side we employ Green’s formula element—wise:

1
I = Z <(f - Luh,v - Ph'U)T - 5(6 nry- [Vuh],v - Ph’l))aTﬂQ>
TET,
+ Z (9 —en - Vup,v— Pyo)p
Ee€én,n
1
< > (If = Lupllozllv — Paollor + gllent - [Vupllloornellv = Phvlloarne
TET,
+ Y g —en-Vupllogllo — Pavlos
Ee€én,n
_ 1
< 0( > (#he 1f - LunlB + gl [Vl orne
TeTh
1/2
+ Z hye™Y g —en - Vuh||%,E> , (5.34)
Ee€én,n

having made use of the Cauchy—Schwarz inequality, the interpolant approximation properties
(5.12) and (5.13) applied on T and the shape regularity of Ty,.
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To bound II, we notice that since u is the solution of (5.1), uy solves (5.3) and APyv = 0,
we have

IT = Y (u,L*Py)r
TET

= - Z (up,a - VPyv)r
TET

> Nusllozlia- VPwlor
TETy

C Y hee™ P|f = a- Vupllorllalloore'?[Prvlir
TeT

IN

IN

1/2

Cq Y llalkrhie Nf —a- Vunllir (5.35)
TET

IN

thanks to (5.33), (5.14) and the shape regularity of 7j,.
Thus, from (5.34) and (5.35) we conclude that the following error bound holds:

V2 u — up|1 0 < CE&s, (5.36)

with the error estimator £ given by

_ 1
& = 3 (Hhe 17 - Dun)lr + ghrelin - [Vl orna
TeT,
b3 lalphre g~ en- Vi
EGgh,N

Remark. The a posteriori error analysis in both the £1/2—weighted H'-seminorm and the
Lo-norm error of the RFB method based on general finite elements (i.e. not necessarily linear)
was carried out by Sangalli [86] under the hypothesis that the vector field @ has no closed
integral curves on the whole domain Q. Sangalli’s result, though, applies to the component of
the RFB solution in the space

Wh ={v € Vrpp: L'v =0 in each element T € T},

instead of the piecewise polynomial component as is the case of our bound.

Under such a hypothesis on a and again restricting ourselves to the case of linear finite
elements, we can repeat Sangalli’s argument, this time applied to the polynomial component
of the solution by employing (5.33). In this way the error bound (5.36) follows, with the extra
control on the Lo—norm error.

Example 5. We consider again the boundary—value problem of Example 1 of the previous
section. The outcome of the implementation of the error estimator (5.36) in an adaptive
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Figure 5.5: Example 5. The final solution produced by the algorithm based on the £g error
indicator.

algorithm is displayed in Table 5.4 (top). The quantities S; and S}, reported in the table are
the two terms in the error estimator which are relevant to this problem, i.e.

S2 = Z hie | f = Luallf 7
TeTy,
1
S2 = 5 > hreln - [Vun]l§ orng-
TETy,

In the computation the marking parameters and the tolerance were set to
Cref = '37 pref - -]., TOL - 0].

The final solution and mesh can be seen in Figure 5.5. The intermediate meshes are similar to
those shown in Figure 5.10 below.

We have repeated the same experiment but using as error indicator the Lo—norm of the
bubble part of the RFB solution, which we know to be a representation of the internal residual.
Thus, we define the new indicator

Ep = Z HaHgo,TfleUng,T-
TETy

The results obtained using this error indicator are shown in Table 5.4 (bottom). Of course, g
is reliable only as long as the internal residual term S; dominates the edge residual term S.
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From the table we observe that this may be true initially, but not asymptotically. Indeed, it has
been proved by Kunert and Verfiirth [68] and Carstensen and Verfiirth [32] that edge residuals
dominate the error of the finite element method in the case of low order finite elements, by
showing that the edge residuals yield global upper and local lower bounds on the error, both
in the H'- and the Lo—norm.

So £p cannot alone be considered as a reliable a posteriori error bound. However, it gives
a more effective estimate of the internal residual than S;; see the effectivities reported in
Table 5.4.

Alternatively, £g may be used to decide wherever to locally turn off the stabilisation term.
This idea is developed in the next section.

Example 6. Our final example of this section regards the mixed boundary value problem
Example 4 in the previous section. The problem data are specified in Figure 5.4 (above—left):
a discontinuity in the Dirichlet boundary condition at (z,y) = (0,1/2) is propagated (and
smoothed) inside the domain and exits through the Neumann boundary.

Figure 5.9 shows the successive refinements obtained using the bubble error indicator £p,
with the tolerance set to TOL = 0.05. The solution on the final mesh is also shown.

Refinement is limited to the areas with relatively strong variations of Vu. Figure 5.9
should be compared with Figure 5.4 which reports the triangulation obtained by solving the
same boundary—value problem but with the refinement driven by a linear functional of the
solution as target.

5.4 hb—adaptivity

In this chapter we have examined adaptive mesh refinement algorithms for the stabilised
Galerkin finite element formulation (5.3) derived from the RFB method. The stabilisation
term in (5.3) depends on the bubble part of the solution wuj. Using the assumption of local
constant coefficients, we have been able to reduce the complex task of the evaluation of such
term to that of the evaluation of an average of the bubble. Further, the approximation (5.20)
led to the even simpler task of the evaluation of the elemental diameter in the direction of the
convective field. As a consequence, in terms of computational complexity, the resulting method
in the case of piecewise linear elements is equivalent to the SDFEM, with the advantage that
the stabilisation parameter is given by the method.

This way of proceeding, of course, has some limitations. The approximation (5.20) may not
be sufficiently accurate if the coefficients in the p.d.e. cannot be treated as piecewise constant
functions or if the mesh is sufficiently refined, as we have seen in Chapter 3. One may also wish
to compute the bubbles more accurately, for example to include an edge—stabilisation of the
sort discussed in the previous chapter. Finally, it is clear that in parts of the computational
domain where the mesh has been sufficiently refined or where the solution is relatively flat,
there is no reason for stabilising in the first place.
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Na | lu—unllog | e lu—unlio | Es(un) | Si | Sy | effix | effen
32 0.29 0.9 10.4 10.4 | 0.44 | 35.9 | 11.5
69 0.19 0.83 7.13 7.1 [ 0.58 | 36.3 | 8.6
155 0.12 0.74 4.71 4.6 | 0.66 | 39.1 | 6.3
329 0.06 0.59 2.99 2.9 10.69 | 45 5
711 0.034 0.4 1.83 1.7 1 0.62 | 52.9 | 4.6
1501 0.018 0.24 1.1 0.1 0.5 | 58.8 | 4.6
3706 0.01 0.13 0.66 0.5 | 0.35 | 66.5 | 4.8
11272 0.005 0.07 0.38 0.3 | 0.22 | 72.7 | 5.06
Na | lu—unllog | e?lu—unlio | Es(un) | effio | effen | Si | S
32 0.29 0.9 3.01 10.3 | 3.3 | 10.4 | 0.44
69 0.19 0.83 2.03 10.3 | 2.4 7.1 | 0.58
143 0.12 0.7 1.33 10.9 | 1.79 | 4.7 | 0.67
310 0.068 0.59 0.83 12.2 | 1.4 | 3.03 | 0.69
650 0.036 0.4 0.49 13.6 | 1.21 1.8 | 0.62
1358 0.019 0.24 0.27 14.1 | 1.12 | 1.04 | 0.51
3137 0.011 0.14 0.15 14.2 | 1.07 | 0.6 | 0.37
9367 0.0058 0.08 0.08 144 | 1.02 | 0.3 | 0.24
28705 0.0032 0.04 0.04 14.6 | 0.98 | 0.19 | 0.15

Table 5.4: Example 5. Error over successive refinements in the Lo and e'/?~weighted H'-
seminorm (energy norm); ¢ = 1072, &g indicator (above) and bubble indicator £ (below).

This justifies the idea of including in the mesh adaptation algorithms discussed so far (h-
refinement) an automatic way of ‘turning off’ the stabilising term wherever this is no more
required (b-derefinement).

To address the crucial issue of when and where to phase out the bubble stabilisation
alongside the h—refinement process, we may use the particular residual term in the a posteriori
error bound which is related to the stabilising term itself.

2_weighted H'-seminorm error bound £s in (5.36),

Let us consider, in particular, the ¢/
discarding, for simplicity, any term related to Neumann boundary conditions. Looking back
to (5.35) we see that g in fact consists of three terms, S;, S, and &, related to the internal

residual, the boundary jump and the stabilising term, respectively. Let SiT , SbT and ng be the
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local components of these terms, that is,

S = hre VPIf — (—eluy +a- V) or

hore 1/2
st = (M) In (v

& = llallore

0,07NN

—-1/2

uslloz-

We have seen that the term 5,? is bounded by SiT . Moreover, we expect the term SbT to be
relatively small wherever stabilisation is not crucial. Hence we use the relative magnitude of
SbT with respect to SiT and S,T as an indicator for b—derefinement.

Let

nT:SzT—i_SIT7

be the local error indicator and let 77 be the maximum of 5y after cutting the upper 10% or 5%
of the values. Finally, let cer € (0,1) and ¢ > 0 be some user—selected threshold parameters
and TOL a given tolerance.

We propose the following algorithm, which is a modification of the one defined in Sec-
tion 5.1.1:

1. Define an initial mesh;
2. Calculate up, on the current mesh;
3. Check the stopping criterion: IF £ < TOL/C then STOP;

4. Apply the h-refinement criterion: refine those elements whose error estimator ESTV =
SiT + S,T exceeds cpeff];

5. Apply the b—derefinement criterion: IF EbT < ¢ (SlT + S'bT), turn off the stabilisation
term on T or its newly defined sons and GOTO 2.

Since we are not assuming any a priori knowledge about the behaviour of the solution, the
algorithm is started up with the stabilising term turned on everywhere. Later on, the fraction
of elements selected for b—derefinement depends on the threshold parameter ¢,. Its ‘correct’
value should be expected to be subject to the relative sharpness of the different components
of the error bound. In both examples below the value ¢, = 0.1 produced satisfactory results.

Example 7. It is instructive to apply the hb—adaptive algorithm to Example 5 above. We

recall that we are solving:

—eAu+uy +uy=f inQ=(0,1)2
u=0 in 0€2.
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No | €2lu —uplr0 | Es(un) | effen Noi | €2lu—upli0 | Es(un) | effen
32 0.9 104 | 11.5 32 0.9 104 | 11.5

69 0.83 7.13 8.6 69 0.83 7.13 8.6
155 0.74 4.71 6.3 155 0.74 4.86 6.5
329 0.59 2.99 5 332 0.59 3.15 5.3
711 0.4 1.83 | 4.6 727 0.39 1.92 | 4.8
1501 0.24 1.1 | 46 || 1523 0.22 1.16 | 5.2
3706 0.13 0.66 4.8 3808 0.123 0.67 5.4
11272 0.07 0.38 5.06 11240 0.067 0.38 5.7

Table 5.5: Example 5. Error and £s indicator over successive refinements in the ¢'/2-weighted
H'-seminorm (energy norm); ¢ = 10~2. We show the output of the h-refinement algorithm
(left) and hb-algorithm (right).

The exact solution exhibits a boundary layer at the outflow boundary z = 1 and y = 1 (see
Figure 5.5). Ideally, stabilisation should be employed only in the layer. The sequence of meshes
produced is shown in Figure 5.10: the yellow elements are those where stabilisation is turned
on. We notice that stabilisation is soon removed away from the layer and, when this is resolved,
also inside it.

The effectiveness of the new algorithm can be appreciated from the numbers displayed in
Table 5.5: the outputs of the old algorithm are reproduced on the left (cf. Table 5.4), while, on
the right, we present those of the hb-refinement algorithm. Similar accuracy is achieved with
comparable meshes. The new algorithm uses more elements while removing the stabilisation
from the layer. On the other hand, the final mesh, which is layer-resolving, is slightly more
effective since the same accuracy is obtained with 32 elements less. Over all, if the parameter
¢y is appropriately tuned, the numerical solution is not corrupted and the algorithm is robust.

Example 8. To conclude, we test the hb-refinement algorithm on a problem whose solution
exhibits an internal layer, namely Example 6 above. The sequence of mesh refinements is
depicted in Figure 5.11. Again we have marked in yellow the elements where stabilisation is
present. To highlight more clearly such elements, the final mesh is plotted a second time at the
bottom-right of the figure with the stabilised elements lifted out of the xzy—plane. The meshes
are very similar to those obtained without b—derefinement, cf Figure 5.9: this may have to
do with the fact that the layer of the solution of this problem is less severe then the one of
Example 7 above.
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Figure 5.6: Example 2. Successive mesh refinements, e = 1072, P = (.49, .49)
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Figure 5.7: Example 2. Successive mesh refinements, e = 106, P = (.49, .49)
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Figure 5.8: Example 3. Successive mesh refinement and final solution for J(u) = [, u and
e=10"5,
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Figure 5.9: Example 6. Successive mesh refinement using the error estimator £, ¢ = 1073.
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Figure 5.10: Example 7. Successive mesh refinement and bubble derefinement, ¢ = 1072,
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Figure 5.11: Example 8. Successive mesh refinement and bubble derefinement, ¢ = 1073,



Chapter 6

Conclusions and future work

In this chapter we summarise the work presented in this thesis and indicate directions for
further research.

6.1 Conclusions

In this thesis we analysed the mathematical properties and discussed the implementation of
the residual—free bubble (RFB) finite element method as a two-level procedure.

In particular, we studied the RFB method for the accurate and stable solution of steady—
state convection—diffusion problems focusing on the convection-dominated regime.

Our analysis guarantees the successful application of the method to a range of multiscale
problems. Indeed, the ideas developed are based on the interpretation of convection—-dominated
diffusion problems as multiscale problems in which the fine scales are highly localised while
their effect on the accuracy of the numerical solution is global.

After an introductory survey of known properties in Chapter 2, we embarked in Chapter 3
on the a prior: analysis of the energy—norm error of the RFB method on anisotropic meshes.
The methodology is closely related to that introduced by Sangalli [85], defining an interpolation
operator that fully exploits the richness of the RFB finite element Vrpp. In this way sharp error
bounds are derived. When the problem is strongly convection-dominated, the solution is highly
anisotropic. For this reason it is crucial that the error is bounded by appropriately weighted
norms of directional derivatives of the solution. To this end, we used ad hoc anisotropic scaling
results and interpolation error bounds.

Anisotropy also has to be taken into account in the tuning of the parameters appearing in
streamline—diffusion type methods. We have used the stabilising term derived from the RFB
method to re-define the mesh Péclet number and propose a new choice of the SD—parameter
suited to the anisotropic nature of the partition.

In Chapter 4, we defined, analysed and presented an implementation of the RFBe (enhanced
residual—free bubble) method. This method is designed to combine the stabilising effect of the
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residual-free bubbles with an improved resolution of the boundary layer behaviour. The latter
is obtained by further enriching the RFB method with edge bubbles inside the layer. The
choice of the edge bubbles is justified by a priori analysis of a particular problem for which
the asymptotic approximation of the solution is known.

A key point in the analysis is that the global error of a locally residual-free finite element
method is governed by the approximation properties of the finite element space on the skeleton
of the partition. For this reason it has been possible to express the interpolation error as a
sum of the errors committed over the edges of the triangulation. Subsequently, the value of the
edge bubble is fixed by matching with a first order asymptotic approximation. We obtained an
a priori error bound explicit in the diffusion parameter €. This shows that the RFBe scheme
has better accuracy properties than RFB in the preasymptotic regime ¢ < h.

Moreover, numerical examples show that, although we are acting locally by introducing
a few edge-based bubbles, the RFBe method is globally more accurate than the classical
RFB. This fact indicates that the introduction of the edge bubbles has a stabilising effect on
the method. In particular, we observed results as good as those obtained with the shock—
capturing method [75]. The new method is able to achieve the same degree of accuracy as the
RFB method in a considerably smaller amount of CPU time, even on a sequential computer.

Finally, in Chapter 5, we developed an h—adaptive algorithm based on our residual-based a
posteriori error bounds. The error is represented in terms of the residual of the finite element
approximation weighted by the solution of the dual problem. The error estimate depends
on the choice of the dual problem. The numerical approximation of linear functionals of the
solution as well as energy norm error estimation have been considered.

We have shown that the elimination of the dual solution from the a posteriori bound,
obtained via strong stability estimates, leads to suboptimal bounds. For this reason, the
algorithm proposed is based on, so called, Type I error bounds, i.e. a posterior: error bounds
depending explicitly on the dual solution. The downside of this approach is that, in order
to obtain a computable error bound, the dual solution need to be computed numerically.
Moreover, for the error bound to be reliable, it is necessary that the dual problem is solved
accurately. The recipe followed has been to use a dual mesh with mesh size half of that of the
primal mesh. In the examples considered the algorithm was seen to be reliable and effective.

The a posteriori analysis of the energy norm error of the RFB method, also presented in
Chapter 5, is similar to that of the SUPG method due to Verfirth [94]. The error bound
obtained consists of three terms: the two classical residual-based terms of the Galerkin formu-
lation, i.e. internal residual and boundary jump of the gradient, as well as a third term which
stems from static condensation of the bubbles. We showed how the third term can be bounded
by means of the other two terms. To this end, we used an appropriate stability result applied
to the bubble part of the solution.

We also introduced a new hb—adaptive algorithm in which the bubble stabilisation is phased
off locally according to the relative magnitude of the three terms mentioned above in the o
posteriori error bound. In this way, while the mesh is refined, we avoid the evaluation of the
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bubble part of the solution where this is not crucial.

6.2 Future work

We developed the RFBe method for the resolution of boundary layers in convection-dominated
diffusion problems, assuming that the position of the layers is known a priori. The design
of equally effective edge bubbles for the resolution of internal layers, not discussed in this
thesis, should be considered. Moreover, the method should be combined with a posteriori
error estimation aimed at locating elements where edge bubbles need to be inserted. To this
end, the hb—adaptive algorithm proposed in Section 5.4 may be employed. Indeed, the local
magnitude of the bubble part of the solution is a clear indicator of the presence of layers
and hence of the regions where edge bubbles should be introduced. We are also interested in
comparing an adaptive RFBe algorithm with other techniques for the solution of problems of
practical relevance in which it is required that the layers are computed accurately.

Finally, the study of the RFBe framework applied to multiscale problems, different from
convection—diffusion problems, remains open and is worthy of investigation.

The same applies to the other results obtained here for the classical RFB method, such as
the anisotropic a priori error analysis and a posterior: error analysis.

As we mentioned in the Introduction, some work has been done on RFB applied to the
Stokes problem, the incompressible Navier—Stokes equations, the Helmholtz equation and ho-
mogenization problems which seem worth pursuing further, although, for the latter, the use of
nonconforming techniques like oversampling seems necessary, see Hou et al. [39].

The h—adaptive algorithm considered in Chapter 5 could be made more effective by allowing
anisotropic mesh refinement. To this end, a more complex refinement strategy which allows
for mesh derefinement is needed.



Appendix A

Relevant topics

A.1 Boundary and internal layers

What is the thickness of a boundary or internal layer? Acheson ([1], pp. 267-268), writing about
fluid motion near a no-slip boundary, states that “the rapid variation of u (near the boundary)
should be just sufficient to prevent the viscous term from being negligible, notwithstanding the
small coefficient of viscosity v. We may at once use this consideration to obtain an order of
magnitude estimate of the boundary layer thickness”. Indeed, the thickness of a boundary layer
is defined through the mathematical notion of distinguished limit in the asymptotic expansion
of the equation with respect to the perturbation parameter. The idea is to define the thickness
of a boundary layer as the width of the region in which the magnitude of the higher order term
matches that of other terms in the equations. For this purpose, the solution is represented by
an asymptotic expansion in terms of €.

We present such a method through a simple model problem. Consider the boundary value
problem

{ —eAu + Uy = f in ()= (0’ 1)2’ (Al)

u =0 on 01,

where ¢ is a positive constant. We begin by analysing the outflow boundary, given by y = 1,
where we expect a boundary layer.

Let 6 be the width of such layer, which in the context of matched asymptotic expansions is
called inner region, whereas the remainder of the domain takes the name of outer region. We
consider a perturbation expansion of the outer solution in the form

m
UO(ZU, Y, 6) = Z 6juj((l;, y) + O(Sm)'
=0

This has to be matched with an inner solution which is defined in the inner region in terms of
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a local stretched coordinate:
m .
ui(z,y,e) = w(z,n,e) = Y elw;(z,n) + o(e™). (A.2)
=0

The choice of the stretched variable n gives the range of validity of the inner approximation
and so the thickness of the boundary layer. Let n = (1 — y)/e®. Substituting (A.2) into (A.1)
we have that wy must satisfy

—t 52 ¢ a2 —€ oy (A.3)

We determine o through the notion of distinguished limit; that is, the correct « is the one

that gives a dominant balance between two or more terms of the equation (A.3). The reason
for this is that, as explained in [12], p. 437, “in general, only the distinguished limit gives a
nontrivial boundary-layer structure which is asymptotically matchable to the outer solution”.
In this case, the correct choice is @ = 1 which gives, to leading order,

2'[1) w
G (,m) + Gt (,m) = 0,
wop(z,0) = 0.

This equation represents an exponential correction. We say that near I' there is an exponential
boundary layer of width § ~ ¢ as ¢ — 0.

A similar analysis near the characteristic boundary x = 0 and x = 1 gives, in terms of the
stretched variable £ = z/ e1/2, the leading term equation

0*w ow
B 20 4 %o
9¢ dy
which is of parabolic type. Near the characteristic boundary we have a parabolic boundary
layer of thickness O(/2) as € — 0.
The internal layers of the convection-diffusion equation are also parabolic, again of thickness
O(e'/?).

Since numerical methods are often formulated as energy minimisation techniques, it can

=0,

be convenient to define the inner region as the region in which the gradient of » is bounded
uniformly w.r.t. . For this reason, in the numerical analysis literature, we also find the
layer thickness defined to be of order O(elog(l/e)) for an exponential layer and of order
O(e'/?1og(1/¢)) for a parabolic layer.

A.2 Shishkin interpolation

Given the one-dimensional boundary value problem

—ev) +avy = f in I = (0,h),
Uh(O) = 07 Uh(h) = 07
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we scale it back to the unit interval:
{ —e*" +av' =hf inl=(0,1),

v(0) =0, wv(h) =0, (A4

where ¢* = ¢/h, and consider Shishkin interpolation of v.
A Shishkin piecewise equidistant mesh consisting of N subdivisions (with N even) is defined
as follows. Given the turning point

N =¢s(e"/eq)In N,

where ¢ is a constant independent of ¢* and N, the mesh is taken to be uniform with N/2
subdivisions on the two subintervals (0,1 — A*) and (1 — A*,1). Thus, the mesh on [0,1] is
piecewise uniform. For the continuous piecewise linear interpolant v’ of the solution v of (A.4),
the interpolation error over such mesh satisfies (see [82])

o =o' ff ; + [l =2"|I§ ; < CNT? I’ N,

with the constant C' independent of ¢ and N.
Scaling back to the interval I;, we obtain a Shishkin mesh with turning point A = ¢(e/c,) In N
and the scaled interpolation error bound

elv — v’ %,Ih +h7 Yo — UI||%,Ih <CN2In®N.

Shishkin meshes on rectangles are constructed by taking a tensor product of 1-D meshes,
and then similar approximation results apply.

A.3 Estimates for the asymptotic approximation

We prove the bounds stated in Lemma 4.3.2. Let u. = uas—ug be the collection of all correction
terms in the asymptotic approximation wu,s defined by (4.30). We prove that there exists a
constant C independent of € and A such that

e—2cocah/5

> luefir <C——F—

FEFout

Let us concentrate on the Ly—norm of the derivative with respect to z (proceeding in a similar
way, one can prove a similar bound on the y—derivative). It is sufficient to consider the first
term of u., i.e.,

ug(1,y)e @00,

We start by fixing an edge I';; = [2;—1, ;] X y;. We have:

/Ii
Ti—1

d _z 2 1 . 1—z; . l-—z;_
Uo(l,yj)aeial(l,yj)% dz < CL;%) (eanl(Lyj) - efZal(l,y]) - 1) .
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Thus, summing over all edges oriented along the x—axis, we get

n—1lm—1 4. 2 n—1
[ —z ]. y
Yy / uo(Lyy) Lm0 2 gy < 030 DI (o gt
j=1 i=1 /Ti-1 =1
672cocah/5
< - 7
- eh

where hyy = 1 — 2p7—1. Let us now consider the edge I'j; = z; X [y;—1,y;]. This time we have

Yi d l—o
uo(1,y) (—ealuyw s )
/yil dz T=x;

J
Thus, summing over all edges oriented along the y—axis, we get

2
d —
uo(1,y) (%e_‘“(l’y) = >
T=X;

J

2

1 Yi l—z;
dy < C_Z/ e*QGI(I:y)T]dy < C%672Ca
€ y £

17rc]-
€

i—1

m—1n—1 Vi

>3/

j=1 i=1"¥i-1

1 m—1 —a
—2ca—+
dy < 06_226
j=1

672cocah/5 m—2

—ZCQCQ%
< O e
Jj=0
e—2cocah/e
< O———
£2
A similar argument yields
5 e < Co et
FEFout
As regards the H'-seminorm of u. over I'y;, we show that
§:mﬁp<ciu (A.5)
T T T eh

Tel'y

Let us fix the edge I'j = [1 — h, 1] X y;. The leading term is clearly given by

1
/l—h

and summing over j, we get (A.5). Again we can proceed in a similar fashion to prove that

2
4 a5

dr

o= L) (1 amns) < L
2e &

lluel|§r < Ce,
and hence

> luellgr < Ceh ™
Tel'y
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