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Abstract

This text on piecewise linear continuous approximations of real
functions doesn’t pretend to be a regular mathematical paper, this is
another genre. I call it dazibao.

The motivation for this dazibao is the extremely popular and successful
way to “learn” functions by “training deep neural networks”.

Let us try to “learn” a real function of d variables from sample values of
the function at the points of a fixed finite subset Z ⊂ Rd. To this end, we
fix a class F of available functions and try to approach min

φ∈F
J(φ),

J(φ) =
∑
ζ∈Z

ρ(φ(ζ)− yζ),

where ρ is a penalty function (a convex function such that ρ(−t) = ρ(t),
ρ(0) = 0) and yζ is the expected value of the function which we are learning
at the point ζ. A minimizer of J is the best we can learn with our data.

This is a quite common approximation problem. In classical mathemat-
ics, F is usually a finite-dimensional vector space of functions. It happens
however that bulky nonlinear objects called “deep neural networks” are in-
comparably more efficient in a huge number of practical applications.

Deep neural networks is nowadays a colossal business but their simple
basic incarnations are as follows. A function φ is obtained by a d-layers
neural network if it has a form:

φ(x) = ⟨a0, F 1 ◦ · · · ◦ Fm(x)⟩+ α0, x ∈ Rd, (1)

where F i : Rki−1 → Rki ,

F i(x) =
(
σ(⟨ai1, x⟩+ αi

1), . . . , σ(⟨aiki , x⟩+ αi
ki
)
)
, x ∈ Rki−1, (2)
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aij ∈ Rki−1, αj
i ∈ R, i = 0, . . . ,m, and

σ(y) = max{εy, y}, y ∈ R, (3)

where ε ∈ [0, 1) is a fixed in advance constant. Here σ is the “activating
function”, the only nonlinear element of the construction.

Function (1)-(3) is continuous and “piecewise linear”. A simple way to
rigorously characterize continuous piecewise linear functions is to define them
as continuous selections of linear or affine ones. Let e1, · · · , en be affine

functions on Rd, ei(x) = s0i +
d∑

j=1

sjixj, s
j
i , xj ∈ R. We say that a continuous

function φ is continuous selection of the family e1, . . . en if

φ(x) ∈ {e1(x), . . . , el(x)}, ∀x ∈ Rd.

Minimal number of the affine functions in the family is a natural measure of
complexity of the piecewise linear function φ.

Any continuous piecewise linear function should admit a realization by
a neural network of the form (1)-(3) if we do not have restrictions on the
number or dimensions of the layers; these numbers somehow correlate with
the complexity of φ. Fairly, such a realization of a piecewise linear function
looks rather artificial and very hard to study. The next example should make
more clear what I mean.

Let us substitute the activating function σ(y) = max{εy, y}, y ∈ R, in
(2) by the function σ̂(y) = y2. Such a modification of the neural network
(1)-(3) produces a polynomial function φ̂. Moreover, it is easy to see that
any polynomial can be realized in this way. Now try to recognize properties
of the polynomial from such a neural network type realization!

Actually, there is a much more simple and transparent presentation of
continuous piecewise linear functions found in [1]. Recall that an abstract
simplicial complex with n vertices is a collection of subsets Si ⊂ {1, . . . , n}, i =
1, . . . , k such that Si ⊈ Sj if i ̸= j.

Theorem 1. Let φ be a continuous selection of the affine functions e1, . . . , en.
Then there exists an abstract simplicial complex S1, . . . , Sk with n vertices
such that

φ(x) = min
{
max
j∈S1

ej(x), . . . ,max
j∈Sk

ej(x)
}
. (4)

Moreover, if e1, . . . , en are affinely independent then this abstract simplicial
complex is unique.
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It is convenient to think about the affine function e(x) = s0 +
d∑

j=1

sjxj on

Rd as a linear function
d∑

j=0

sjxj on R1+d restricted to the affine hyperplane

defined by the equation x0 = 1. The affine independence of ej is just linear
independence of the vectors (s0j , s

1
j , . . . , s

d
j ), 1 ≤ j ≤ n.

Let Σn be the group of permutations of {1, . . . , n}. For any ν ∈ Σn, we
set

Kν = {x ∈ Rd : eν(1)(x) ≤ · · · ≤ eν(n)(x)};

then Kν is a convex polytope (not necessary bounded and maybe empty). It
is easy to see that φ is linear on Kν , there exists ϕ(ν) ∈ {1, . . . , n} such that
φ
∣∣
Kν

= eν(ϕ(ν))
∣∣
Kν

. Indeed,

intKν = {x ∈ Rd : eν(1)(x) < · · · < eν(n)(x)}.

If intKν ̸= ∅, then we do not have a chance to switch from one ei to another
one inside Kν . If Kν is not full-dimensional then we restrict everything to
the affine hull of Kν where it is full-dimensional. The restriction may lead to
the loss of uniqueness of ϕ(ν) because the restrictions of different ei maybe
equal.

Let ē = (e1, . . . , en), Σē = {ν ∈ Σn : intKν ̸= ∅}; then Rd =
⋃

ν∈Σē

intKν .

We see that the continuous selection φ is uniquely determined by its symbol
ϕ : Σē → {1, . . . , n}.

Theorem 1 follows from the following key lemma whose proof will be
explained later.

Key lemma. Let ν ∈ Σē, Sν = {ν(1), . . . , ν(ϕ(ν))}, then

φ(x) ≤ max
j∈Sν

ej(x), ∀x ∈ Rd.

Key lemma implies that φ(x) = min
ν∈Σē

max
j∈Sν

ej(x). Moreover, the minmax

does not change if we remove all sets of the collection Sν , ν ∈ Σē, which have
proper subsets in the same collection.

Remark. Inverting the order in Key lemma we obtain the inequality

φ(x) ≥ max
{
eν(ϕ(ν)), . . . , eν(n))(x)

}
, ∀x ∈ Rd,
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and the maxmin presentation:

φ(x) = max
ν∈Σē

min
j∈Sν

ej, where Sν = {ν(ϕ(ν)), . . . , ν(n)}.

Recall that ei ∈
(
Rd+1

)∗
; moreover, we may assume that d + 1 ≤ n

and that the map ē : Rd+1 → Rn is injective. The coordinate functions
(ξ1, . . . , ξn) 7→ ξi, i = 1 . . . , n, form a basis of Rn∗, and ei can be treated as
the restriction of the i-th coordinate function to the subspace ē

(
Rd+1

)
⊂ Rn.

It is convenient to consider ei as coordinate functions defined on the
whole Rn. We see that any minmax presentation of a continuous selection is
automatically defined on the whole Rn (see (4)); moreover, Σē = Σn in this
case.

The Key Lemma and its corollaries give us a purely combinatorial inter-
pretation of the symbols of continuous selections. Given 1 ≤ i < j ≤ n, we
set [i, j] = {k ∈ Z : i ≤ k ≤ j}, a “segment” in the ordered set {1, . . . , n}. A
map f : Σn → {1, . . . , n} is the symbol of a continuous selection if and only
if

f(ν) = min
σ∈Σn

max ν−1 ◦ σ([1, f(σ)])

or, equivalently,
f(ν) = max

σ∈Σn

min ν−1 ◦ σ([f(σ), n]),

for any ν ∈ Σn. In this case, we say that f is continuous.
We denote by F the set of all maps from Σn to {1, . . . , n} and by Φ the

set of continuous maps. The projectors π : F → Φ and Π : F → Φ are
defined as follows:

π(f)(ν) = min
σ∈Σn

max ν−1 ◦ σ([1, f(σ)]),

Π(f)(ν) = max
σ∈Σn

min ν−1 ◦ σ([f(σ), n]),

for any ν ∈ Σn.

Proposition 1. Let f ∈ F , then π(f)(ν) ≤ f(ν), ∀ ν ∈ Σn; moreover, if
ϕ ∈ Φ and ϕ(ν) ≤ f(ν), ∀ ν ∈ Σn, then ϕ(ν) ≤ π(f)(ν), ∀ ν ∈ Σn.

Similarly, Π(f)(ν) ≥ f(ν), ∀ ν ∈ Σn; moreover, if ψ ∈ Φ and ψ(ν) ≥
f(ν), ∀ ν ∈ Σn, then ψ(ν) ≥ Π(f)(ν), ∀ ν ∈ Σn.
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Proof. It is enough to check inequalities which involve π. We have:

π(f)(ν) = min
σ∈Σn

max ν−1 ◦ σ([1, f(σ)]) ≤ max ν−1 ◦ ν([1, f(ν)]) = f(ν).

Let ϕ ∈ Φ and ϕ(ν) ≤ f(ν), ∀ ν ∈ Σn; then [1, ϕ(σ)] ⊂ [1, f(σ)],
∀σ ∈ Σn, and

ϕ(ν) = min
σ∈Σn

max ν−1 ◦ σ([1, ϕ(σ)]) ≤ min
σ∈Σn

max ν−1 ◦ σ([1, f(σ)]) = π(f)(ν).

□

Theorem 1 and its maxmin version are suitable both for the topological
study of piecewise linear functions and for the “learning”. We first explain
topology, a piecewise linear analogue of the Morse theory.

We say that the n-tuple of affine functions ē = (e1, . . . , en) is in general
position if any d + 1 functions among e1, . . . , en are affinely independent.
Clearly, n-tuples in general position form a Zariski-open subset of the (d+1)n-
dimensional space of all n-tuples ē. Continuous selections of the n-tuples in
general position play here the role of Morse functions.

Given x ∈ Rd, we define the set of active indices Ix(φ) ⊂ {1, . . . , n} by
the formula:

Ix(φ) = {ν(ϕ(ν)) : x ∈ Kν , ν ∈ Σē} .
If ē is in general position, then #Ix(φ) ≤ d+ 1, ∀x ∈ Rd.

Let Bd = {(y1, . . . , yd) ∈ Rd : |yi| < 1, i = 1, . . . , d}, a d-dimensional
box. We say that x ∈ Rd is a topologically regular point of function φ, if
there exists a neighborhood Ox ⊂ Rd of the point x and a homeomorphism
Ψ : Bε → Ox such that φ ◦ Ψ(y) = φ(x) + y1, ∀ y ∈ Bd. Otherwise, x is a
topologically critical point of φ.

Let ē be in general position and φ be a continuous selection of ē. It is not
hard to show that #Ix = d + 1 for any topologically critical point of φ. In
particular, critical points are isolated. The homotopy type of the Lebesgue
sets {x ∈ Rd : φ(x) ≤ t} and {x ∈ Rd : φ(x) ≥ t} change when t passes
a critical level of φ and these changes are controlled by the minmax and
maxmin presentations of φ.

We need some notations to describe the change of homotopy type. We
do it in Theorems 2 and 3 where we assume that ē is in general position and
φ has form (4). We set Ci

x = Ix(φ) \ (Ix ∩ Si), i = 1, . . . , k. Maximal sets of
the collection Ci

x, i = 1, . . . , k, with respect to the inclusion form a simplicial
complex Cx.
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Let Ĉx be the cone over Cx; then Cx ⊂ Ĉx and Hi(Ĉx; Cx) = H̃i−1(Cx), i =
0, 1, . . ., where Hi(·; ·) is the i-dimensional homology of the pair and H̃i(·)
is homology of the augmented chain complex. If Cx is contractible, then
Hi(Ĉx; Cx) = 0, ∀ i ≥ 0. If Cx is an empty complex, then Ĉx is a point,
H0(Ĉx; ∅) = Z, Hi(Ĉx; ∅),∀ i > 0.

We set cr(φ) = {x ∈ Rd : #Ix(φ) = d+ 1}.

Theorem 2. For any x ∈ cr(φ) there exists a neighborhood Ox of x such
that the pair

(
Ox; {y ∈ Ox : φ(y) < φ(x)}

)
is homotopy equivalent to the

pair
(
Ĉx; Cx

)
.

This theorem as well as the next one are special cases of a more general
result proved in [2].

Theorem 3. Assume that {x ∈ Rd : φ(x) ≤ t1} is compact and t0 < t1.
If φ−1(t) ∩ cr(φ) = ∅ ∀ t ∈ (t0, t1], then {x ∈ Rd : φ(x) ≤ t0} is a

homotopy retract of {x ∈ Rd : φ(x) ≤ t1}.
If there exists exactly one t ∈ (t0, t1] such that φ−1(t) ∩ cr(φ) ̸= ∅, then

Hi

(
{x ∈ Rd : φ(x) ≤ t1}; {x ∈ Rd : φ(x) ≤ t0}

)
=

⊕
x∈cr(φ)∩φ−1(t)

H̃i−1(Cx).

This is what concerns topology. Now we turn to the learning and we
do not assume anymore that ē is in general position. It is wise to use the
term “learning” instead of “optimization”; the goal of an iterated process
is to reasonably improve the approximation but we do not expect to really
minimize the cost J . Moreover, as you will see, the procedure does not
depend on the shape of the cost.

The class of functions F is one of piecewise linear continuous functions
of a prescribed complexity. In other words, we fix n and consider all con-
tinuous selections of n affine functions. We start with a sample n-tuple
ē = (e1, . . . , en) and try to select a collection Si ⊂ {1, . . . , n}, i = 1, . . . , k,
such that the values of function (4) at the points ζ ∈ Z reasonably well
approximate yζ .

Given ν ∈ Σē, we set:

f(ν) = min
ζ∈Kν

max{i : eν(i)(ζ) ≤ yζ}, g(ν) = max
ζ∈Kν

min{i : eν(i)(ζ) ≥ yζ}.

According to proposition 1, π(f) is the symbol of the best approximation of
the data {yζ : ζ ∈ Z} from below by a continuous selection of e1, . . . , en. The
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desired S1, . . . , Sk are all minimal with respect to inclusion elements of the
family of subsets ν([1, f(ν)]), ν ∈ Σē.

Similarly, Π(g) is the symbol of the best approximation of the same data
from above.

If we do not need to stay below or above the data, then π(g) or Π(f)
should be better approximations.

Remark. Let φ and ψ be continuous selections of e1, . . . , en approximating
the data from below and from above. We can minimize J(tφ + (1− t)ψ) as
a function of t ∈ [0, 1] to obtain even better approximation. The minimizer
t∗φ+ (1− t∗)ψ is still piecewise linear but it has a higher complexity; it is a
continuous selection of the affine functions t∗ei+(1− t∗)ej, i, j ∈ {1, . . . , n}.

As soon as S = {S1, . . . , Sk} is fixed we consider

J

(
min
S∈S

max
j∈S

ej(·)
)

(5)

as a function of ē = (e1, . . . , en). “Learning” procedure which I am going
to describe provides us with a new better n-tuple of affine functions ē′ =
(e′1, . . . , e

′
n). Then we select new collection of subsets S ′

i ⊂ {1, . . . , n}, i =
1, . . . , k′, based on the n-tuple ē′, fix it, “learn” new ē′′, e. t. c.

Now we focus on the study of (5) as a function of ē with a fixed simplicial
complex S = {S1, . . . , Sk}. We improve ē step by step. First we choose some
i ∈ {1, . . . , n} and change only ei keeping all ej, j ̸= i, fixed; then we choose
another i and repeat, and so on.

It is reasonable to choose i randomly. We can start with the uniform
probability distribution on {1, . . . , n} such that each i has probability 1

n
and

we adjust the distribution after each step in such a way that recently involved
i have smaller probabilities. A natural adjustment rule is as follows. Assume
that number j has probability pj at a certain step, j = 1, . . . , n. We randomly
select i in this step and send pi 7→ 0, pj 7→ pj +

pi
n−1

, ∀ j ̸= i, for the next
step. We stop iterations when we see that the learning ceases to be efficient.

This kind of “random coordinate descend” should be well-known in the
optimization theory. More interesting is “learning” of ei when all ej, j ̸= i,
are fixed. We do it in one step. Let me first give the formula and then explain
why I believe that it is the right one.

Some notations. We may assume without lack of generality that the affine
hull of Z is the whole Rd, otherwise we restrict all our study to this affine
hull. Given ζ ∈ Z, we set ζ̃ = (1, ζ) ∈ R1+d and ζ̂ = 1

|ζ̃| ζ̃ ∈ Sd.
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Let Ri = {S ∈ S : i ∈ S}. We define constants viζ , w
i
ζ by the following

formulas:
viζ = min

S∈Ri

max
j∈S\{i}

ej(ζ), wi
ζ = min

S∈S\Ri

max
j∈S

ej(ζ),

and set

uiζ =
1

|ζ̃|
min

{
wi

ζ ,max{yζ , viζ}
}
.

Finally, we identify affine function e : x 7→ s0 +
n∑

j=1

sjxj with vector

e = (s0, s1, . . . sn) ∈ R1+d; then e(x) = ⟨e, (1, x)⟩.
If S and all ej, j ̸= i, are fixed, then right ei is going to be:

ei =

(∑
ζ∈Z

ζ̂ ζ̂∗

)−1∑
ζ∈Z

uiζ ζ̂ . (6)

Why expression (6) is a good choice? We fix ej, j ̸= i, and try to approach
minimum of the function

f : ei → J

(
min
S∈S

max
j∈S

ej(·)
)
.

We have, f(ei) =
∑
ζ∈Z

ψζ(ei), where

ψζ(ei) = ρ

(
min
S∈S

max
j∈S

ej(ζ)− yζ

)
= ρ

(
min

{
wi

ζ ,max{ei(ζ), viζ}
}
− yζ

)
.

Let t = ei(ζ) = ⟨ei, ζ̃⟩. We see that ψζ is constant on the affine hyper-
planes t = const. Moreover, ψζ attains minimum at

t = min
{
wi

ζ ,max{yζ , viζ}
}
= |ζ̃|uiζ .

In other words, ψζ attains minimum at any point of the affine hyperplane

Eζ =
{
e ∈ R1+d : ⟨e, ζ⟩ = |ζ̃|uiζ

}
.

Now, instead of a search for the minimizer of f =
∑
ζ∈z

ψζ , we simply look for

the minimizer of the function

e 7→ 1

2

∑
ζ∈ Z

dist
(
e, Eζ

)2
, e ∈ R1+d,
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which does not depend on the choice of the penalty function ρ.
Let us find this minimizer. We have, dist(e, Eζ)

2 = min
eζ∈Eζ

|e− eζ |2. Hence

we are looking for solution of the following conditional minimum problem:
minimize the function (e, {eζ : ζ ∈ Z}) 7→ 1

2

∑
ζ∈Z |e− eζ |2 under conditions

eζ ∈ Eζ , ζ ∈ Z.
We apply the Lagrange multipliers rule. The Lagrange function is:

L : (e, {eζ , λζ : ζ ∈ Z}) 7→ 1

2

∑
ζ∈Z

(
|e− eζ |2 − λζ(⟨e, ζ̃⟩ − yζ)

)
.

Condition dL = 0 gives the following equalities:∑
ζ∈Z

(e− eζ) = 0, e− eζ = λζ ζ̃ , ⟨eζ , ζ̃⟩ = |ζ̃|uiζ . (7)

We take inner product of the 2nd equality in (7) with ζ̃, apply the 3d equality

and obtain: λζ =
⟨e,ζ̃⟩
|ζ̃|2 −

ui
ζ

|ζ̃| . Then we plugin this expression for λζ in the second

equality in (7) and get:

e− eζ = ⟨e, ζ̂⟩ζ̂ − uiζ ζ̂ .

We sum up the last identity for all ζ ∈ Z, use the 1st equality in (7) and
obtain: (∑

ζ∈Z

ζ̂ ζ̂∗

)
e =

∑
ζ∈Z

uiζ ζ̂ . (8)

Recall that the affine hull of ζ ∈ Z is the whole Rd, hence the matrix in
the left-hand side of (8) is nondegenerate and we obtain (6). Note that this
matrix depends only on Z; it is the same for all iterations of the algorithm
and has to be inverted only once.

The learning algorithm is completely described. It is hard to expect that
it will work well if you use it blindly, as it is. Most probably, it will work
very bad but it can serve as a base for further tuning.

To conclude, I explain the proof of the Key lemma, as promised. Let
ν ∈ Σē, we can connect an interior point of Kν with any point in Rd by a
segment x(t) = x(0) + t(x(1) − x(0)), 0 ≤ t ≤ 1, where x(0) ∈ intKν . Let
ui(t) = ei(x(t)); then u1(t), . . . , un(t) are n numbered moving points on the
real line, where each point is moving with its own constant velocity.
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It follows that any point ui(t) can meet another point uj(t) only once
during the movement. Moreover, ui(0) < uj(0), ∀ i ∈ Sν , j ̸= Sν ; hence ui(t)
can meet uj(t) only in such a way that ui(t) < uj(t) before the meeting and
ui(t) > uj(t) after the meeting.

For any t ∈ [0, 1], one of the points ui(t) equals φ(x(t)); we mark this
point by the checkbox. The checkbox can be transferred from one point
to another point only when they meet. We thus obtain that, for any t ∈
[0, 1], either the number of the marked point belongs to Sν or some points
whose numbers belong to Sν are greater than the marked one. In particular,
φ(x(t)) ≤ max

i∈Sν

ui(t), ∀ t ∈ [0, 1].
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