
Approximate controllability on the group of volume-preserving

diffeomorphisms

Andrei Agrachev∗ Bettina Kazandjian†

Abstract

We study controlability issues for the group of volume-preserving diffeomorphisms of the torus
Td for system ẋ = f(x) + u(t), where f is a fixed divergence free vector field on Td and u(t) are
constant vector fields which generate translations of the torus. Main results concern d equals two
or three.
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1 Introduction

Let Td = Rd/2πZd be the d-dimensional torus. Translations of the torus are generated by constant
vector fields. Let f be a non constant divergence free vector field on Td: it generates a one-parametric
group of volume-preserving diffeomorphisms. In this paper, we try to understand which transforma-
tions of Td can be reached if we perturb f by constant fields (with the constant depending on time),
mainly for d = 2 and d = 3.

The answer is surprisingly simple in many cases and we hope that it might be useful in the mathe-
matical fluid dynamics, in particular, for the study of turbulent flows. In the next paper, we are going
to treat random perturbations.
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We start with a general linear in control system ẋ =
s∑

j=1

ujFj(x) on a compact manifold M .

Theorem 1 characterizes the flows on M which can be uniformly approximated by the flows generated

by a time-varying ordinary differential equation of the form ẋ =
s∑

j=1

uj(t)Fj(x). These are exactly the

flows generated by equations ẋ = Vt(x), where Vt ∈ Lie{F1, . . . , Fs}.
In Theorem 2 we deal with the flows which preserve a fixed volume form on M . Such flows are

generated by the divergence free vector fields. Let Vec0M be the space of divergence free vector
fields. Theorem 2 states that the condition Vec0M ⊂ Lie{F1, . . . , Fs} is sufficient for the possibility to
transfer any finite ensemble of mutually distinct points xi ∈ M, i = 1, . . . , N , to any other sequence

yi ∈M, i = 1, . . . , N , by the flow generated by the equation of the form ẋ =
s∑

j=1

uj(t)Fj(x), where the

control (u1(·), . . . , us(·)) and the transfer time are the same for all xi, i = 1, . . . , N .
General theorems 1–2 are rather simple corollaries of earlier results. We need them to study the

affine in control system ẋ = f(x)+u that is our main objective. Here u is an arbitrary constant vector
field on the torus Td.

Let f(x) =
∑

m∈Zd

pme
i⟨m,x⟩ and Mf =

{
m ∈ Zd | pm ̸= 0

}
. Theorem 3 and Theorem 4 concern the

case where #Mf <∞ and span{f(x) | x ∈ Td} = spanMf = Rd.
In Theorem 3 we describe the closure of the Lie subalgebra of Vec0Td generated by the fields f +u

for d equals two or three. This closure is equal to the space of fields g ∈ Vec0Td such that Mg is
contained in the subgroup of Zd generated by Mf .

In Theorem 4 we describe the closure of the attainable set of the system ẋ = f(x)+u in the group
of volume-preserving diffeomorphisms of Td. It appears that the closure of the attainable set depends
only on the Lie algebra computed in Theorem 3 in spite of the fact that our system is not linear in
control, it has a nontrivial drift f while its linear part u is commutative.

Finally, Theorem 5 concerns the controllability for finite ensembles of points on Td. Here we do not
need the set Mf to be finite. The theorem states that for d equals two or three there exists a residual
subset of Vec0Td such that the system ẋ = f(x) + u can transfer any finite ensemble of mutually
distinct points to any other ensemble with the same number of points. On the other hand, according
to the same theorem, whatever f we take, the transfer of at least two points ensemble may require
arbitrary long time. No a priori time bound is possible.

These are our main results. In Section 6, the Lie algebra generated by f + u, u ∈ Rd, is computed
also in the case where spanMf ̸= Rd (see Theorem 6 and Theorem 7).

Remark 1. Admissible controls in this paper are measurable locally bounded vector functions but all
results remain valid with much smaller classes of admissible controls. Indeed, we say that a sequence
of locally integrable vector functions un(·) converges to u(·) on the segment [0, T ] in the sliding topology

if ∥un∥L1 are uniformly bounded and
∣∣∣∫ t

0
un(t)− u(t) dt

∣∣∣ → 0 uniformly for t ∈ [0, T ] as n→ ∞.

The map which sends the control u(·) to the flow P
u(·)
· is continuous in the sliding topology (see,

for instance, Lemma 8.10 in [5]) and all our results survive if we use only controls from an everywhere
dense subset in the sliding topology. For example, it is sufficient to use only controls from the space of
vector polynomials or trigonometric polynomials, or piecewise constant vector functions, or even from
the set of piecewise constant vector functions with only one nonzero coordinate in every time moment.

To conclude the introduction, we have to mention that various aspects of the controllability on the
group of diffeomorphisms were studied in [2, 6, 7, 8, 9, 10, 11, 12, 13, 14] and many other papers.
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2 Motion planning in the group of diffeomorphisms and con-
trollability of finite ensembles of points

Let M be a compact Riemannian manifold of class C∞ and dimension n ∈ N. Let us consider the
linearly controlled equation

ẋ =

s∑
j=1

uj(t)Fj(x), u(t) = (u1(t), . . . , us(t)) ∈ Rs, x ∈M, (1)

where the measurable map t 7→ u(t) is locally bounded. The flow of (1) at time t is denoted by

P
u(·)
t . Considering the family of smooth vector fields F := {F1, . . . , Fs}, we would like to understand

which trajectories in the group of diffeomorphisms ofM could be approximated by the flows t 7→ P
u(·)
t ,

uniformly on any time segment. This is a problem of motion planning in the group of diffeomorphisms.
Let us consider N ∈ N∗ distinct points of M , γ = (γ1, . . . , γN ) ∈ M̂N , where M̂N =MN \∆N and

∆N :=
{
γ ∈MN | ∃k ̸= ℓ, γk = γℓ

}
. If we apply the dynamic (1) to the initial positions (γ1, . . . , γN ),

the configuration of these points at time t ≥ 0 is determined by (P
u(·)
t (γ1), . . . , P

u(·)
t (γN )). We would

like to study properties about controllability of finite ensembles of points depending on F .

2.1 Motion planning in the group of diffeomorphisms

In what follows, M is a compact Riemannian manifold of class C∞. Given a smooth tensor field
q 7→ ωq, q ∈ M , where ωq ∈ (TqM)⊗k ⊗ (T ∗

qM)⊗ℓ, the norms ∥ω∥m, m = 0, 1, 2, . . . , are defined as
follows:

∥ω∥m = sup
q∈M,i≤m

|∇i
qω|,

where ∇ is the covariant derivative. Here k = 1, 2, . . . , ℓ = 0, 1, 2, . . . , and (T ∗M)⊗0 = C∞(M). The
seminorms ∥ · ∥m define standard C∞-topology on the space of smooth tensor fields of the prescribed
degree. Standard C∞-topology on the group of diffeomorphisms is induced by the topology on C∞(M)
if we treat a diffeomorphism P : M → M as a linear operator P ∗ on C∞(M), where P ∗ : a 7→
a ◦ P, ∥P∥m = sup

∥a∥m≤1

∥P ∗a∥m. More details about this formalism and chronological calculus can be

found in [1, Chap. 6].
Let VecM be the Lie algebra of smooth vector fields on M . Given F ⊂ VecM, LieF ⊂ VecM is

the Lie subalgebra generated by F and LieF is the closure of LieF in the standard topology.
A measurable map t 7→ Vt, where Vt ∈ VecM, t ∈ R, is called a time-varying vector field if

∥vt∥m is a locally bounded function of t for any m ≥ 0. Any time-varying vector field defines a flow
Pt ∈ DiffM, t ∈ R, where P0 = Id, ∂

∂tPt(x) = Vt(Pt(x)). We use the standard chronological notation

for this flow, Pt =
−→exp

∫ t

0
Vτ dτ . The following result is a corollary of [3, Th. 3].

Theorem 1. Let F = {F1, . . . , Fs} ⊂ VecM . Let t 7→ Vt ∈ LieF , t ∈ [0, T ], be a time-varying
vector field. Then for every m ∈ N and ε > 0 there exists a control t 7→ u(t) = (u1(t), . . . , us(t)) ∈
L∞([0, T ],Rs), such that the flow P

u(·)
t , generated by control system (1) and control u(·), satisfies

∥−→exp
∫ t

0

Vτ dτ − P
u(·)
t ∥m ≤ ε, t ∈ [0, T ].

Proof. If Vt =
k∑

i=1

vi(t)Xi, where Xi ∈ LieF , then the desired result is just the statement of Theorem 3

from [3]. On the other hand, we can uniformly and arbitrarily well approximate Vt by such linear
combination in any norm ∥ · ∥m. Indeed, {Vt | 0 ≤ t ≤ T} is a precompact set in the topology ∥ · ∥m
since this set is bounded in the norm ∥ · ∥m+1. In other words, for every δ > 0 there exists a finite set
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{X1, . . . , Xk} ⊂ LieF such that the union of the radius δ balls in norm ∥ · ∥m centered at Xi covers
the set {Vt | 0 ≤ t ≤ T}. We present [0, T ] as the disjoint union of subsets Si, [0, T ] =

⋃
i

Si, such

that ∥Xi − Vt∥m ≤ δ, for every t ∈ Si, and we set

vi(t) =

{
1 t ∈ Si

0 t /∈ Si,

then ∥Vt −
k∑

i=1

vi(t)Xi∥m ≤ δ, for every t ∈ [0, T ].

Let us consider control system (1). The connected component of the identity in DiffM is denoted
by Diff0M . For every measurable and locally bounded control u(·), the vector field t 7→

∑s
j=1 uj(t)Fj

is a time-varying vector field according to the previous definition.

Definition 1. An element P ∈ Diff0M is said to be approximately reachable for system (1) in time
t ≥ 0 if for every m ∈ N and ε > 0, there exists a measurable and locally bounded control u(·) such

that the flow P
u(·)
t , generated by system (1) and control u(·), satisfies

∥P − P
u(·)
t ∥m ≤ ε.

The set of approximately reachable diffeomorphisms in time t ≥ 0 is denoted by At and A := ∪t≥0At.
For every subgroup D ⊂ Diff0M , system (1) is said to be approximately controllable in D if A = D.

Let ω be a fixed volume form on M and Vec0M be the Lie algebra of divergence free vector fields
of M ,

Vec0M = {f ∈ VecM | divωf = 0}.

Any volume-preserving flow Pt has a form Pt = −→exp
∫ t

0
fτdτ , where t 7→ fτ ∈ Vec0M . Then Pt ∈

Diff0M . The set of volume-preserving flows of M is denoted by Diff0M . This is a subgroup of the
connected component of the identity Diff0M , and Diff0M ⊂ Diff0M .

Proposition 1. Let F = {F1, . . . , Fs} be the family of admissible vector fields for system (1).

— If LieF = VecM , system (1) is approximately controllable in Diff0M .

— If LieF ⊃ Vec0M , system (1) is approximately controllable in Diff0M .

Proof. This is a corollary of Theorem 1.

2.2 Controllability of finite ensembles of points

In what follows, we study the controllability of finite ensembles of points in M̂N . Indeed system (1)
can be lifted to a linear in control system defined on M̂N by the controlled equations

γ̇ℓ =

s∑
j=1

uj(t)Fj(γℓ), u(t) ∈ Rs, ℓ ∈ {1, . . . , N} , (2)

where (γ1, . . . , γN ) ∈ M̂N and the map t 7→ u(t) is measurable and locally bounded. The attainable
set at time t ≥ 0 from γ = (γ1, . . . , γN ) ∈ M̂N of system (2) is defined by

Aγ(t) :=
{
(P

u(·)
t (γ1), . . . , P

u(·)
t (γN )) | u(·) ∈ L∞([0, t],Rs)

}
⊂ M̂N .

Definition 2. For a general system of control we also define the attainable set from γ by Aγ =
∪t≥0Aγ(t) (which coincides with Aγ(t) for every t ≥ 0 in the case of system (2)). Then a system is

said globally controllable (respectively globally controllable in time T ≥ 0) if Aγ = M̂N (respectively if

∪0≤t≤TAγ(t) = M̂N ) for every γ ∈ M̂N .
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Definition 3. Let N ∈ N∗. System (1) is said to be globally controllable (respectively globally con-
trollable in time T ≥ 0) in the space of N -ensembles if system (2) is globally controllable (respectively
globally controllable in time T ) in M̂N .

The space M̂N has a structure of smooth manifold. For each γ ∈ M̂N , the tangent space TγM̂
N

is isomorphic to Tγ1
M × · · · × TγN

M . The N -fold of a vector field X ∈ VecM is defined on M̂N by

XN (γ1, . . . , γN ) = (X(γ1), . . . , X(γN )). If X is complete onM then XN is also complete on M̂N . The
Lie bracket of N -folds XN , Y N verifies the formula [XN , Y N ] = [X,Y ]N and the same holds for the
iterated Lie brackets.

Definition 4. Let FN =
{
FN
1 , . . . , F

N
s

}
. System (2) is said to be Lie bracket generating at γ if{

F (γ) | F ∈ LieFN
}

= TγM̂
N . It is Lie bracket generating if it is Lie bracket generating at every

γ ∈ M̂N .

As a consequence of Rashevsky-Chow theorem, if system (2) is Lie bracket generating then it is
globally controllable, see e.g. [5, Th. 5.2 and Cor 5.2].

Theorem 2. Let F = {F1, . . . , Fs}. If Vec0M ⊂ LieF , then the family FN is Lie bracket generating
in M̂N for every N ∈ N∗, and system (1) is globally controllable in the space of N -ensembles.

Proof. Let γ ∈MN , we consider the linear map

φγ :

{
LieF → TγM̂

N

X 7→ XN (γ),

if it is surjective for every γ ∈ M̂N , then system (2) is Lie bracket generating and so it is globally
controllable. By assumption, if Imφγ denotes the image of φγ , then

{
XN (γ) | X ∈ Vec0M

}
⊂ Imφγ .

Recall that X ∈ Vec0M if and only if divX = 0. Let us prove that for every (a1, . . . , aN ) ∈ TγM̂
N ,

there exists X ∈ Vec0M such that XN (γ) = (a1, . . . , aN ). Let V1, . . . ,VN be open neighborhoods in
M such that

γℓ ∈ Vℓ, Vk ∩ Vℓ = ∅, k ̸= ℓ ∈ {1, . . . , N} ,
and such that Vℓ is diffeomorphic to some open neighborhood Oℓ ⊂ Rn, 0 ∈ Oℓ. Locally, the vector
field X can be expressed in coordinates. The charts ϕℓ : Vℓ → Oℓ are chosen such that the expression
of the volume form ω in coordinates is equal to dx1 ∧ . . . ∧ dxn. Given a = (a1, . . . , an) ∈ Rn and two
neighborhoods O ⊂ O′ of 0 in Rn, we construct X̄ ∈ VecRn such that X̄ = a on O, suppX̄ ⊂ O′ and
divX̄ = 0. Let χ : Rn → R be a smooth cut-off function such that χ(x) = 1

n−1 on O and suppχ ⊂ O′.
We consider a (n− 2)-differential form on Rn,

α = χ
∑

1≤ℓ<m≤n

((−1)m−2aℓxm + (−1)ℓ−1amxℓ)dx1 ∧ . . . d̂xℓ . . . d̂xm . . . ∧ dxn.

Then we compute dα =
∑n

m=1 ψmdx1 . . . d̂xm . . . dxn and we check that ψm = am on O and suppψm ⊂
O′. Let us consider the vector field X̄ =

∑n
m=1 ψm∂xm

, then X̄ = a on O and suppX̄ ⊂ O′. Moreover,

ddα = 0 = (divX̄)dx1 ∧ . . . ∧ dxn, so divX̄=0. The image of φγ is dense in TγM̂
N , so the map is

surjective.

3 Volume-preserving diffeomorphisms on Td

In the following, we consider the torus Td = Rd/2πZd. Vector fields on Td are naturally identified
with 2π-periodic d-vector functions on Rd, i.e. the vector function f(x) = (f1(x), . . . , fd(x)), x =

(x1, . . . , xd) ∈ Rd, corresponds to the field
d∑

i=1

f i(x) ∂
∂xi

. In the following, we study an affine in control

system of the form
ẋ = f(x) + u(t), u(t) ∈ Rd, (3)

5



where f ∈ Vec0Td is any divergence free vector field and t 7→ u(t) is measurable and locally bounded.

Remark 2. By replacing f and u by f + c and u− c where c ∈ Rd is a constant, we can suppose that∫
Td f = 0 without changing the set A.

The flow at time t of system (3) is denoted by P
u(·)
t . The set of approximately reachable elements

in the group of diffeomorphisms is denoted by A, see Definition 1. We would like to understand
which volume-preserving diffeomorphisms could be approximated by the flows of the previous equation,
depending on the modes of the Fourier decomposition of f . In the following, we study a classification
of the approximately reachable set in the group of diffeomorphisms depending on f .

3.1 Subgroups of volume-preserving flows on Td

Recall that Zd is an additive subgroup of Rd. Let Γ ⊂ Zd be a subgroup of Zd such that spanΓ = Rd.
Let f(x) =

∑
m∈Zd

pme
i⟨m,x⟩ be the Fourier expansion of f , where pm ∈ Cd, p−m = p̄m. We set

Mf =
{
m ∈ Zd | pm ̸= 0

}
,

Vec0(Td)Γ =
{
f ∈ VecTd | divf = 0, Mf ⊂ Γ

}
.

We omit the index Γ if Γ = Zd. It is easy to check that Vec0(Td)Γ is a closed Lie subalgebra of VecTd.
Now we consider the subgroup Γ∗ ⊂ Rd dual to Γ,

Γ∗ =
{
x ∈ Rd | ⟨x, y⟩ ∈ Z, ∀ y ∈ Γ

}
.

We see that Zd ⊂ Γ∗ and moreover, Γ∗/Zd is a finite group. Indeed, Γ = AZd, where A is a nonde-
generate matrix with integral entries. Then Γ∗ = A∗−1Zd, where A∗ is the adjoint matrix of A, and
A∗−1 has rational entries.

Moreover, the group 2πΓ∗/2πZd acts freely and properly on Td by the translations and a divergence
free vector field f belongs to Vec0(Td)Γ if and only if f commutes with this action. The same property
can be described in other way if we use the covering pΓ∗ : Td → Td/2πΓ∗. Here Td/2πΓ∗ is another
torus. We see that f ∈ Vec0(Td)Γ if and only if f = p∗Γ∗g where g ∈ Vec0(Td/2πΓ∗).

Any volume-preserving flow Pt ∈ DiffTd, P0 = Id, has a form Pt =
−→exp

∫ t

0
fτ dτ , where fτ ∈ Vec0Td.

This is true for any torus, in particular for the torus Td/2πΓ∗. We obtain that the flows generated
by the time varying vector fields from Vec0(Td)Γ are exactly the lifts to Td of the volume-preserving
flows on Td/2πΓ∗.

We denote by Diff0Td
Γ the connected component of the identity in the group of volume-preserving

diffeomorphisms of Td commuting with the action of Γ∗/Zd. Then

Diff0Td
Γ =

{
−→exp

∫ t

0

fτ dτ | fτ ∈ Vec0(Td)Γ

}
.

3.2 Approximation of volume-preserving diffeomorphisms by an affine in
control system

Recall that Vec0Td is the set of divergence free vector fields of Td. We define the subset Vd ⊂ Vec0Td

as follows. A vector field f ∈ Vec0Td belongs to Vd if

(i) #Mf <∞,

(ii) spanMf = Rd,

(iii) span
{
f(x) | x ∈ Td

}
= Rd.
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Clearly, Vd = Vec0Td. Moreover, if d = 2, then property (ii) implies (iii). Indeed if f(x) =∑
m∈Mf

am cos⟨m,x⟩+ bm sin⟨m,x⟩, x ∈ Td, then span
{
f(x) | x ∈ Td

}
= span {am, bm | m ∈ Mf}. If

d = 2 and spanMf = R2, there existm,n ∈ Mf such that am, an ∈ R2\{0} and ⟨m, am⟩ = ⟨n, an⟩ = 0.
Then necessarily span {am, an} = R2.

Here we present the main results for system (3) with f ∈ Vd. The proofs are given in the following
sections.

Theorem 3. Let d = 2 or d = 3 and f ∈ Vd. Let Γ ⊂ Zd be the subgroup generated by Mf . Then

Lie{f + u | u ∈ Rd} = Vec0(Td)Γ.

Theorem 4. Under the conditions of Theorem 3, the subgroup Diff0Td
Γ ⊂ Diff0Td is invariant for

system (3) and moreover the system is approximately controllable in Diff0Td
Γ.

Theorem 5. (i) Let d = 2 or d = 3. There exists a residual subset R ⊂ Vec0Td such that, for every
f ∈ R and N ∈ N∗, system (3) is globally controllable in the space of N -ensembles in Td.

(ii) For every d ≥ 2, f ∈ Vec0Td, N ≥ 2, and T > 0, system (3) is not globally controllable for time
smaller or equal than T in the space of N -ensembles in Td.

4 Proof of Theorem 4

In what follows, coneS is the convex cone generated by the subset S of a real vector space,

coneS =

{∑
i

αiai | ai ∈ S, αi ≥ 0

}
,

and dw is the standard volume form on the torus. Let f ∈ C∞(Td,Rd) be a smooth vector function
and θ ∈ Td. We define a vector function fθ by the formula fθ(x) = f(x+ θ), x ∈ Td.

Let t ≥ 0. By applying the variation formula to system (3), see e.g. [5, Section 2.7], we obtain a
decomposition of the flow

P
u(·)
t = −→exp

∫ t

0

f + u(τ)dτ

=

(
−→exp

∫ t

0

(
Ade

∫ τ
0

u(s)ds
)
fdτ

)
◦ e

∫ t
0
u(s)ds

where (AdP−1)f = P∗f for any P ∈ DiffTd. Let θ(t) =
∫ t

0
u(s)ds. Notice that eθ(t) ∈ DiffTd is the

translation by θ(t). So (
Ade

∫ τ
0

u(s)ds
)
f = (Adeθ(τ))f = fθ(τ).

Therefore,

P
u(·)
t =

(
−→exp

∫ t

0

fθ(τ)dτ

)
◦ eθ(t).

The map

(θ(·), v) 7→
(
−→exp

∫ t

0

fθ(τ)dτ

)
◦ ev

is continuous from L1([0, t],Rd)× Rd to DiffM , and moreover the map

u(·) ∈ L1
loc(R+,Rd) 7→ (θ(·), θ(t)) ∈ L1([0, t],Rd)× Rd (4)
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has dense image in L1([0, t],Rd)× Rd, so the closure of the attainable set verifies{
−→exp

∫ t

0

fθ(τ)dτ | θ(·) ∈ L1([0, t],Rd)

}
◦
{
ev | v ∈ Rd

}
⊂ A.

So the study of A is reduced to the study of the no more linear in the control system

ẋ = fθ(t)(x), θ(t) ∈ Rd, (5)

where
∫
Td f(τ)dτ = 0, see Remark 2, and t 7→ θ(t) ∈ L1

loc(R+,Rs). By standard convexification, see [5,
Th. 8.7], the flow of system (5) can approximate the flow of any convex combination of vector fields
fθ, θ ∈ Rd. By re-scaling of the time, the flow of system (5) can approximate the flow of any convex
combination of vector fields fθ, θ ∈ Rd up to a positive multiplicative constant, that is, the flow of any
vector field in the convex subset cone

{
fθ | θ ∈ Rd

}
.

Lemma 1. Let f ∈ C∞(Td,Rn). If
∫
Td

f(x) dw(x) = 0, then

cone{fθ | θ ∈ Td} = span{fθ | θ ∈ Td},

where the closure is taken in the C∞-topology.

Proof. Assume that cone{fθ ∈ Td} is not a vector space. Then, according to the standard separa-
tion theorem for locally convex topological vector spaces, there exists φ ∈ C∞(Td,Rn)∗ such that φ

restricted to span{fθ | θ ∈ Td} is not identically 0 and ⟨φ, fθ⟩ ≤ 0, ∀ θ ∈ Td.
Note that θ 7→ ⟨φ, fθ⟩ is a continuous function on Td, hence it is strictly negative on an open subset

of Td. We have

0 >

∫
Td

⟨φ, fθ⟩ dw(θ) = ⟨φ,
∫
Td

fθ dw(θ)⟩.

On the other hand,(∫
Td

fθ dw(θ)

)
(x) =

∫
Td

f(x+ θ) dw(θ) =

∫
Td

f(θ) dw(θ) = 0, x ∈ Td.

In other words,
∫
Td

fθ dw(θ) = 0 and we obtain a contradiction which proofs the lemma.

So to summarize, the flow of system (3) can approximate the flow of any vector field of the form
αfθ + u, with α ∈ R and θ, u ∈ Rd. In particular, according to Theorem 1, the flow of every vector
field in Lie {fθ + u | θ, u ∈ Rd} belongs to A. According to Theorem 3, if f ∈ Vd and if Γ denotes the

subgroup of Zd generated by Mf , then Lie {f + u | u ∈ Rd} = Vec0(Td)Γ and A = Diff0Td
Γ.

5 Proof of Theorem 5

(i) Let us prove the first statement of Theorem 5. Let d = 2 or d = 3. We recall that

(T̂d)N = (Td)N \
{
(y1, . . . , yN ) ∈ (Td)N | ∃k ̸= ℓ, yk = yℓ

}
.

For every f ∈ Vec0Td, we consider the lift of control system (3) in the space of N -ensembles,

ẋj = f(xj) + u(t), u(t) ∈ Rd, j ∈ {1, . . . , N} , (6)

where x(t) = (x1(t), . . . , xN (t)) ∈ (T̂d)N and u(·) is measurable and locally bounded. As explained in
the proof of Theorem 4, the attainable set of system (6) has the same closure of the attainable set of
the following system,

ẋj = α(t)f(xj) + u(t), α(t) ∈ R, u(t) ∈ Rd, j ∈ {1, . . . , N} , (7)
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where α(·) and u(·) are measurable and locally bounded. System (7) is linear with respect to the
control. According to the Rashevski – Chow theorem, such a system is globally controllable if it is
Lie bracket generating. Let us prove that there exists a residual set R ⊂ Vec0Td such that for every
f ∈ R, for every N ∈ N∗, system (6) is Lie bracket generating in (T̂d)N .

Let us fix N ∈ N∗. We consider f ∈ Vd such that Γ = Zd, then according to Theorem 3,
Lie {f + u | u ∈ Rd} = Vec0Td. In this case, as explained in the proof of Theorem 2, system (6) is Lie

bracket generating at every point of (T̂d)N .

Remark 3. Although the set
{
f ∈ Vd | Γ = Zd

}
is dense in Vec0Td, it is not residual.

The manifold (T̂d)N is the union of a countable number of compacts, (T̂d)N =
⋃
i

KNi, where

KNi ⋐ (T̂d)N , i = 1, 2, . . . . The set of vector fields f ∈ Vec0Td such that system (6) is Lie bracket
generating at every point of KNi is open. Moreover, we know that it is dense, hence it is open dense.
The desired residual set is just the intersection of these open dense subsets for all Ni.

(ii) Let us prove the second statement of Theorem 5. Let d ≥ 2, f ∈ Vec0Td, N ≥ 2 and T > 0.
Let t 7→ x(t) = (x1(t), . . . , xN (t)) be the solution of (6). For every t ∈ [0, T ], x1(t) ̸= x2(t) because
x1(0) ̸= x2(0), and so t 7→ ξ(t) = ln |x1(t) − x2(t)|, t ∈ [0, T ], is well defined. Moreover, for every
t ∈ [0, T ],

ξ̇(t) =
⟨f(x1(t))− f(x2(t)), x1(t)− x2(t)⟩

|x1(t)− x2(t)|
≥ −∥f∥1,

and so |ξ(t)| ≤ ξ(0)− T∥f∥1. Then |x1(t)− x2(t)| ≥ e−T∥f∥1 |x1(0)− x2(0)| for every t ∈ [0, T ], and so
the configurations where x1(t) and x2(t) are very close are not reachable in any time t ∈ [0, T ].

6 Proof of Theorem 3

The proof of Theorem 3 requires several steps and the study depends on the dimension of the considered
torus. For the bi-dimensional torus, the statement of Theorem 3 is proved by Theorem 6, and for the
tri-dimensional torus by Theorem 8.

6.1 Bi-dimensional torus

On T2, the volume form dx ∧ dy coincides with the symplectic form, and every divergence free vector

field can be written as the sum of a Hamiltonian vector field
−→
h ∈ HamT2 and a constant vector field.

Indeed, if we denote ω = dx ∧ dy, according to Cartan’s formula, the Lie derivative of ω along any
vector field V ∈ VecT2 verifies

LV ω = (iV ◦ d+ d ◦ iV )ω = d ◦ iV ω.

If divV = 0, then iV ω is closed, so there exists a constant vector field u = u1∂x1
+ u2∂x2

such that
diV+uω = 0, so V + u verifies LV+uω = 0 and V + u is Hamiltonian.

For this reason we can assume that there exists a smooth function h ∈ C∞(T2,R), associated to
the Hamiltonian vector field

−→
h (x, y) = −∂h

∂y
(x, y)∂x +

∂h

∂x
(x, y)∂y, (x, y) ∈ T2,

such that f =
−→
h .

The non-zero modes that appear in the Fourier decomposition of the function h are exactly those

that appear in the decomposition of the vector field
−→
h . The set of modes in the decomposition of h is

denoted by Mh, and the subgroup of Z2 generated by Mh is denoted by Γ. Note that the subgroups

9



of Z2 generated by Mh and Mf are the same. We recall that for a, b ∈ C∞(T2,R), their Poisson
bracket is defined by

{a, b} =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
,

and the arrow map C∞(T2,R) 7→ HamT2 preserves the Lie algebra structure owing to the relation

−−−→
{a, b} =

[−→a ,−→b ] .
Theorem 6. Let #Mh <∞.

— If spanΓ = R2, then

Lie
{−→
h + u | u ∈ Rd

}
= span

{−→cos⟨m, ·⟩,−→sin⟨m, ·⟩, ∂x, ∂y | m ∈ Γ
}
.

— If spanΓ is of dimension 1, then

Lie
{−→
h + u | u ∈ Rd

}
= Lie

{−→cos⟨m, ·⟩,−→sin⟨m, ·⟩, ∂x, ∂y | m ∈ Mh

}
.

Throughout the proof of Theorem 6, we will use the notation Lh = Lie
{−→
h + u | u ∈ Rd

}
. We will

also make use of the following identity:

adk∂x
adℓ∂y

−→
h =

−−−−−→
∂k+ℓh

∂xk∂yℓ
∈ Lh, k, ℓ ∈ N. (8)

Lemma 2. If #Mh <∞, then

Lh = Lie {−→cos⟨m, ·⟩, ∂x, ∂y | m ∈ Mh} .

Proof. Let h =
∑

m∈Mh
hme

i⟨m,·⟩ be the finite Fourier decomposition of h, where the coefficients hm

are complex. The function f is real-valued so h−m = hm for every m ∈ Mh. Let us prove that
−→cos⟨m0, ·⟩ ∈ Lh for every m0 ∈ Mh. By a straightforward computation,

ad2∂x

−→
h = −

∑
m∈Mh

m2
xhm

−−−→
ei⟨m,·⟩ ∈ Lh,

and then for every α, β ∈ R,

(α− ad2∂x
)(β − ad2∂y

)
−→
h =

∑
m∈Mh

(α−m2
x)(β −m2

y)hme
−−−→
i⟨m,·⟩ ∈ Lh.

Let m0 = (m0x,m0y) ∈ Mh. For any m ∈ Z2 we denote |m| = |m0| if |mx| = |m0x| and |my| = |m0y|.
By iteration and thanks to a specific choice of α, β ∈ R, we obtain that∏

m1,m2∈Mh
m1x ̸=m0x,m2y ̸=m0y

(m2
1x − ad2∂x

)(m2
2y − ad2∂y

)
−→
h = γ

∑
|m|=|m0|

hm
−−−→
ei⟨m,·⟩ ∈ Lh,

where
γ =

∏
m1,m2∈Mh

m1x ̸=m0x,m2y ̸=m0y

(m2
1x −m2

0x)(m
2
2y −m2

0y) ̸= 0,
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and so
∑

|m|=|m0| hm
−−−→
ei⟨m,·⟩ ∈ Lh. The function h is real-valued, so hm = h−m for every m ∈ Mh. If

m0 = (m0x,m0y), we denote m′
0 = (m0x,−m0y), and then∑

|m|=|m0|

hm
−−−→
ei⟨m,·⟩ = 2Re(hm0

−−−−→
ei⟨m0,·⟩ + hm′

0

−−−−→
ei⟨m

′
0,·⟩) ∈ Lh.

Let us consider the case where m0x,m0y ̸= 0. According to formula (8),

−
∑

|m|=|m0|

hm

−−−−−−−−→
∂2

∂x∂y
ei⟨m,·⟩ = 2m0xm0yRe(hm0

−−−−→
ei⟨m0,·⟩ − hm′

0

−−−−→
ei⟨m

′
0,·⟩) ∈ Lh,

so by linear combination Re(hm0

−−−−→
ei⟨m0,·⟩) = Re(hm0

)−→cos⟨m0, ·⟩ − Im(hm0
)
−→
sin⟨m0, ·⟩ ∈ Lh. Taking the

derivative with respect to one variable we obtain that

−Re(hm0)
−→
sin⟨m0, ·⟩ − Im(hm0)

−→cos⟨m0, ·⟩ ∈ Lh,

and so by linear combination, (Re(hm0
)2 + Im(hm0

)2)−→cos⟨m0, ·⟩ ∈ Lh, and so −→cos⟨m0, ·⟩ ∈ Lh. The
other cases can be easily derived from the previous one.

Lemma 3. Let m = (m1,m2) and n = (n1, n2). Let m ∧ n = m1n2 −m2n1. If m,n ∈ Mh and if
m ∧ n ̸= 0, then −→cos⟨m+ n, ·⟩ ∈ Lh.

Proof. According to Lemma 2,

{sin⟨n, ·⟩, cos⟨m, ·⟩} = (m ∧ n) sin⟨m, ·⟩ cos⟨n, ·⟩ ∈ Lh,

{cos⟨n, ·⟩, sin⟨m, ·⟩} = (m ∧ n) cos⟨m, ·⟩ sin⟨n, ·⟩ ∈ Lh.

So by linear combination
−→
sin⟨m+ n, ·⟩ ∈ Lh. By (8), −→cos⟨m+ n, ·⟩ ∈ Lh.

Proof of Theorem 6. If spanMh is of dimension 1, we can assume up to an orthonormal change of
variables that ∂

∂yh = 0. The Poisson Bracket of two functions that only depend on x is zero, so

Lie {−→cos⟨m, ·⟩, ∂x, ∂y | m ∈ Mh} = span
{−→cos⟨m, ·⟩,−→sin⟨m, ·⟩, ∂x, ∂y | m ∈ Lh

}
.

If spanMh = R2, let us introduce the sets Ik(h), k ∈ N∗, defined by I0(h) = Mh and

Ik+1(h) = Ik(h) ∪ {m+ n |m,n ∈ Ik(h),m ∧ n ̸= 0} .

According to Lemma 3, −→cos⟨m, ·⟩ ∈ Lh for every m ∈ ∪k∈NIk(h). But if spanMh = R2, it is easy to
see that ∪k∈NIk(h) = Γ. Indeed every element m ∈ Γ can be written as a sum m = m1 ± · · · ±mp,

with m1, . . . ,mp ∈ Mh. Note that if m ∈ Mh then it is also verified that −→cos⟨−m, ·⟩,−→sin⟨−m, ·⟩ ∈ Lh.
If m = m1 +m2 and if m1 ∧m2 = 0, necessarily there exists m3 ∈ Mh such that m1 ∧m3 ̸= 0. Then
m1+m3 ∈ ∪k∈NIk(h) and (m1+m3)∧m2 ̸= 0, so m1+m2+m3 ∈ ∪k∈NIk(h), and (m1+m2+m3) ̸=
−m3, so finally m1 +m2 ∈ ∪k∈NIk(h) and

Lh = Lie {−→cos⟨m, ·⟩, ∂x, ∂y | m ∈ Γ} = span
{−→cos⟨m, ·⟩,−→sin⟨m, ·⟩, ∂x, ∂y | m ∈ Γ

}
.

Indeed the Lie algebra is composed of linear combinations and derivatives of the modes present in Γ,
which is closed.

In order to check that Γ = Z2, and so that Lie
{−→
h + u | u ∈ Rd

}
is dense in Vec0M , we can apply

the following criterion from [4, Lem. 1].

Lemma 4. The subgroup generated by Mh is equal to Z2 if and only if the greatest common divisor
(g.c.d) of the numbers {m ∧ n | m,n ∈ Mh} equals 1.
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6.2 Tri-dimensional torus

On T3, we use the Fourier decomposition of a divergence free vector field,

f =
∑

m∈Mf

pme
i⟨m,·⟩ =

∑
m∈Mf

am cos⟨m, ·⟩+ bm sin⟨m, ·⟩,

where pm are linear combinations of ∂x, ∂y, ∂z. We identify the constant vector fields pm with vectors
in C3, whose coordinates correspond to the coefficients in ∂x, ∂y, ∂z. In particular pm = am−ibm

2 . The
components of the vector Re(pm) (respectively Im(pm)) correspond to the real parts (respectively
to the imaginary parts) of the components of pm. With these notations, and because divf = 0,
⟨m, pm⟩ = ⟨m, am⟩ = ⟨m, bm⟩ = 0 for every m ∈ Mf . The set of directions that are orthogonal to
m ∈ Z3 is denoted by m⊥ :=

{
v ∈ R3 | ⟨m, v⟩ = 0

}
. For two vectors a, b ∈ R3, their cross product is

denoted by a∧ b. The subgroup of Z3 generated by Mf is denoted by Γ. The aim of this section is to
characterize the Lie algebra Lie

{
f + u | u ∈ R3

}
. We will use the notation Lf = Lie

{
f + u | u ∈ R3

}
.

In the following, we will make use of the following formulas. For every m ̸= 0,

ad∂x
am cos⟨m, ·⟩ = −mxam sin⟨m, ·⟩, ad∂x

bm sin⟨m, ·⟩ = mxbm cos⟨m, ·⟩,
ad∂y

am cos⟨m, ·⟩ = −myam sin⟨m, ·⟩, ad∂y
bm sin⟨m, ·⟩ = mybm cos⟨m, ·⟩,

ad∂z
am cos⟨m, ·⟩ = −mzam sin⟨m, ·⟩, ad∂z

bm sin⟨m, ·⟩ = mzbm cos⟨m, ·⟩.

Lemma 5. Let #Mf <∞. Then

Lf = Lie {am cos⟨m, ·⟩+ bm sin⟨m, ·⟩, ∂x, ∂y, ∂z | m ∈ Mf} .

Proof. As for the bi-dimensional case, we explain how the isolated frequencies also belong to the Lie
algebra. Indeed, let m0 ∈ Mf , let us prove that

am0 cos⟨m0, ·⟩+ bm0 sin⟨m0, ·⟩ ∈ Lf .

By a straightforward computation,

ad2∂x
f = −

∑
m∈Mf

m2
xpme

i⟨m,·⟩ ∈ Lf ,

and so for every α ∈ R,
αf − ad2∂x

f =
∑

m∈Mf

(α−m2
x)pme

i⟨m,·⟩ ∈ Lf .

If there exists m1 ∈ Mf such that |m1x| ̸= |m0x|, then

(m2
1x − ad2∂x

)f =
∑

m∈Mf

(m2
1x −m2

x)pme
i⟨m,·⟩ ∈ Lf .

By iteration of such operation for every m1 ∈ Mf that verifies |m1x| ̸= |m0x|, we obtain that∏
m1∈Mf

|m1x|̸=|m0x|

(m2
1x − ad2∂x

)f = β
∑

m∈Mf
|mx|=|m0x|

pme
i⟨m,·⟩ ∈ Lf ,

where
β =

∏
m1∈Mf

|m1x|̸=|m0x|

(m2
1x −m2

0x) ̸= 0.
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For any m ∈ Z3, |m| = |m0| means that |mx| = |m0x|, |my| = |m0y| and |mz| = |m0z|. By iteration
and thanks to an adapted choice of α, β, we obtain that∏

m1,m2,m3∈Mf
|m1x|̸=|m0x|,|m2y|̸=|m0y|,|m3z|̸=|m0z|

(m2
1x − ad2∂x

)(m2
2y − ad2∂y

)(m2
3z − ad2∂z

)f = γ
∑

m∈Mf
|m|=|m0|

pme
i⟨m,·⟩ ∈ Lf ,

where
γ =

∏
m1,m2,m3∈Mf

|m1x|̸=|m0x|,|m2y|̸=|m0y|,|m3z|̸=|m0z|

(m2
1x −m2

0x)(m
2
2y −m2

0y)(m
2
3z −m2

0z) ̸= 0,

and so ∑
|m|=|m0|

pme
i⟨m,·⟩ ∈ Lf .

Let us consider the case where m0x,m0y,m0z ̸= 0. There are 23 = 8 modes m ∈ Z3 that verify
|m| = |m0|. The vector field f is real-valued, so pm = p−m for every m ∈ Mf . There are 4 couples of
opposite modes m ∈ Z3 that verify |m| = |m0|, so∑

|m|=|m0|

pme
i⟨m,·⟩ = 2(Re(pm0e

i⟨m0,·⟩) +

3∑
k=1

Re(pm0,k
ei⟨m0,k,·⟩)) ∈ Lf ,

where

m0,1 = (m0x,m0y,−m0z), m0,2 = (m0x,−m0y,m0z), m0,3 = (−m0x,m0y,m0z).

Then

1

m0x
(m0x + ad∂x

)
∑

|m|=|m0|

pme
i⟨m,·⟩ = 4(Re(pm0

ei⟨m0,·⟩) +

2∑
k=1

Re(pm0,k
ei⟨m0,k,·⟩)) ∈ Lf .

Then we can apply 1
m0y

(m0y + ad∂y
) and 1

m0z
(m0z + ad∂z

) to the previous vector field and we obtain

that
Re(pm0e

i⟨m0,·⟩) = am0 cos⟨m0, ·⟩+ bm0 sin⟨m0, ·⟩ ∈ Lf .

The other cases can be easily derived from the previous one.

The following formulas can be obtained by straightforward computations and will be useful for the
remaining proofs.

Proposition 2.

1) [pm sin⟨m, ·⟩, pn cos⟨n, ·⟩] = ⟨m, pn⟩pm cos⟨m, ·⟩ cos⟨n, ·⟩+ ⟨n, pm⟩pn sin⟨m, ·⟩ sin⟨n, ·⟩,
[pm cos⟨m, ·⟩, pn sin⟨m, ·⟩] = −⟨m, pn⟩pm sin⟨m, ·⟩ sin⟨n, ·⟩ − ⟨n, pm⟩pn cos⟨m, ·⟩ cos⟨n, ·⟩,
[pm cos⟨m, ·⟩, pn cos⟨m, ·⟩] = −⟨m, pn⟩pm sin⟨m, ·⟩ cos⟨n, ·⟩+ ⟨n, pm⟩pn cos⟨m, ·⟩ sin⟨n, ·⟩,
[pm sin⟨m, ·⟩, pn sin⟨m, ·⟩] = −⟨m, pn⟩pm cos⟨m, ·⟩ sin⟨n, ·⟩ − ⟨n, pm⟩pn sin⟨m, ·⟩ cos⟨n, ·⟩.

2) [pm sin⟨m, ·⟩, pn sin⟨n, ·⟩]− [pm cos⟨m, ·⟩, pn cos⟨n, ·⟩] = (⟨m, pn⟩pm − ⟨n, pm⟩pn) sin⟨m+ n, ·⟩,
[pm cos⟨m, ·⟩, pn sin⟨n, ·⟩] + [pm sin⟨m, ·⟩, pn cos⟨n, ·⟩] = (⟨m, pn⟩pm − ⟨n, pm⟩pn) cos⟨m+ n, ·⟩.

3) [am cos⟨m, ·⟩+ bm sin⟨m, ·⟩, cn cos⟨n, ·⟩+ dn sin⟨n, ·⟩]
−[−am sin⟨m, ·⟩+ bm cos⟨m, ·⟩,−cn sin⟨n, ·⟩+ dn cos⟨n, ·⟩]

= (⟨m, cn⟩bm + ⟨m, dn⟩am − ⟨n, bm⟩cn − ⟨n, am⟩dn) cos⟨m+ n, ·⟩
+(⟨m, dn⟩bm − ⟨m, cn⟩am − ⟨n, bm⟩dn + ⟨n, am⟩cn) sin⟨m+ n, ·⟩.
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Theorem 7. Let #Mf < ∞. If spanMf is of dimension 1 or if (spanMf is of dimension 2 and
span {am, bm | m ∈ Mf} is of dimension 1), then

Lie
{
f + u | u ∈ R3

}
= span {(αam + βbm) cos⟨m, ·⟩+ (−βam + αbm) sin⟨m, ·⟩, ∂x, ∂y, ∂z | m ∈ Mf , α, β ∈ R} ,

Proof. Let m ∈ Mf be such that m ̸= 0. According to Lemma 5, am cos⟨m, ·⟩+ bm sin⟨m, ·⟩ ∈ Lf . If
mx ̸= 0,

ad∂x
(am cos⟨m, ·⟩+ bm sin⟨m, ·⟩) = mx︸︷︷︸

̸=0

(−am sin⟨m, ·⟩+ bm cos⟨m, ·⟩) ∈ Lf .

Else we compute ad∂y or ad∂z , and because m ̸= 0,

−am sin⟨m, ·⟩+ bm cos⟨m, ·⟩ ∈ Lf ,

so for every α, β ∈ R,

(αam + βbm) cos⟨m, ·⟩+ (αbm − βam) sin⟨m, ·⟩ ∈ Lf ,

and

Lie {am cos⟨m, ·⟩+ bm sin⟨m, ·⟩, ∂x, ∂y, ∂z}
=span {(αam + βbm) cos⟨m, ·⟩+ (αbm − βam) sin⟨m, ·⟩, ∂x, ∂y, ∂z | α, β ∈ R} .

Let n ∈ Mf be another mode of f , then an cos⟨n, ·⟩ + bn cos⟨n, ·⟩ ∈ Lf according to Lemma 5.
If spanMf is of dimension 1, then m ∧ n = 0 and m⊥ = n⊥. If spanMf is of dimension 2 and
if m ∧ n ̸= 0, then spanMf = span {m,n}. But span {am, bm | m ∈ Mf} is of dimension 1 and
⟨k, ak⟩ = 0 for every k ∈ Mf , so necessarily span {am, bm | m ∈ Mf} = span {m ∧ n}. In each case,
am, bm, an, bn ∈ span {m ∧ n}, and

⟨m, an⟩ = ⟨n, am⟩ = ⟨m, bn⟩ = ⟨n, bm⟩ = 0.

Applying the third formula of Proposition 2,

[am cos⟨m, ·⟩+ bm sin⟨m, ·⟩, an cos⟨n, ·⟩+ bn sin⟨n, ·⟩] = 0,

and

Lf = span {(αam + βbm) cos⟨m, ·⟩+ (αbm − βam) sin⟨m, ·⟩, ∂x, ∂y, ∂z | m ∈ Mf , α, β ∈ R} .

Remark 4. If m ∈ Mf , then

∀pm ∈ m⊥, pm cos⟨m, ·⟩ ∈ Lf ⇐⇒ ∀pm ∈ m⊥, pm sin⟨m, ·⟩ ∈ Lf ,

and

(∀pm, qm ∈ m⊥, pm cos⟨m, ·⟩+ qm sin⟨m, ·⟩ ∈ Lf ) ⇐⇒ (∀pm ∈ m⊥, pm cos⟨m, ·⟩ ∈ Lf ).

Theorem 8. Let #Mf <∞. If spanMf = R3 and span {am, bm | m ∈ Mf} = R3, then

Lie
{
f + u | u ∈ R3

}
= span

{
pm cos⟨m, ·⟩, qm sin⟨m, ·⟩, ∂x, ∂y, ∂z | m ∈ Γ, pm, qm ∈ m⊥} .

Before going to the proof of Theorem 8, we need to introduce several propositions.
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Proposition 3. Let m ∈ Mf be such that m ̸= 0. If there exists am, bm, a
′
m, b

′
m constant vector fields

such that am, a
′
m ̸= 0, {

am cos⟨m, ·⟩+ bm sin⟨m, ·⟩ ∈ Lf ,
a′m cos⟨m, ·⟩+ b′m sin⟨m, ·⟩ ∈ Lf ,

and such that

(
a′m
b′m

)
̸=

(
α β
−β α

)(
am
bm

)
for every α, β ∈ R, then for every pm, qm ∈ m⊥,

pm cos⟨m, ·⟩+ qm sin⟨m, ·⟩ ∈ Lf .

Proof. According to Remark 4, this is sufficient to show that there exist two non-colinear vectors
pm, qm ∈ m⊥, such that

(pm cos⟨m, ·⟩ ∈ Lf or pm sin⟨m, ·⟩ ∈ Lf ),

and (qm cos⟨m, ·⟩ ∈ Lf or qm sin⟨m, ·⟩ ∈ Lf ).

According to Theorem 7, for every α, β ∈ R,{
(αam + βbm) cos⟨m, ·⟩+ (αbm − βam) sin⟨m, ·⟩ ∈ Lf ,
(α′a′m + β′b′m) cos⟨m, ·⟩+ (α′b′m − β′a′m) sin⟨m, ·⟩ ∈ Lf .

(9)

If a′m ∧ b′m = 0 and am ∧ bm = 0: Thanks to an adapted choice of α, β, α′, β′, we obtain that

am cos⟨m, ·⟩ ∈ Lf and a′m cos⟨m, ·⟩ ∈ Lf ,

and necessarily am ∧ a′m ̸= 0, otherwise it would exist α, β ∈ R such that a′m = αam + βbm and
b′m = αbm − βam.
If a′m ∧ b′m = 0 and if am ∧ bm ̸= 0: Thanks to an adapted choice of α′ and β′, a′m cos⟨m, ·⟩ ∈ Lf .
Moreover am ∧ bm ̸= 0, so there exist α, β such that{

αam + βbm = a′m
(αbm − βam) ∧ a′m ̸= 0.

But a′m ∧ b′m = 0, so (αbm − βam) ∧ b′m ̸= 0. According to (9),{
a′m cos⟨m, ·⟩+ (αbm − βam) sin⟨m, ·⟩ ∈ Lf ,
a′m cos⟨m, ·⟩+ b′m sin⟨m, ·⟩ ∈ Lf ,

(10)

So (αbm − βam − b′m) sin⟨m, ·⟩ ∈ Lf and (αbm − βam − b′m) ∧ a′m ̸= 0.
If a′m ∧ b′m ̸= 0 and am ∧ bm ̸= 0: There exist α, β such that αam + βbm = a′m and then necessarily
αbm − βam ̸= b′m. As explained in the previous case,

(αbm − βam − b′m) sin⟨m, ·⟩ ∈ Lf .

If (αbm − βam)∧ b′m = 0, then b′m sin⟨m, ·⟩ ∈ Lf , and by linear combination we also have a′m cos⟨m, ·⟩,
which is sufficient because a′m ∧ b′m ̸= 0. Else, there exist γ, δ such that

γbm − δam = αbm − βam − b′m,

and {
(γam + δbm) cos⟨m, ·⟩+ (γbm − δam) sin⟨m, ·⟩ ∈ Lf ,
(αbm − βam − b′m) sin⟨m, ·⟩ ∈ Lf ,

so (γam+δbm) cos⟨m, ·⟩ ∈ Lf and necessarily (γam+δbm)∧(γbm−δam) ̸= 0, because am∧bm ̸= 0.

15



Proposition 4. Lets m,n ∈ Mf be such that m∧ n ̸= 0. If there exist am, a
′
m ∈ m⊥ and cn, dn ∈ n⊥

such that

am cos⟨m, ·⟩ ∈ Lf , a′m cos⟨m, ·⟩ ∈ Lf , cn cos⟨n, ·⟩+ dn sin⟨n, ·⟩ ∈ Lf ,

and such that span {am, a′m, cn} = R3, then pk cos⟨k, ·⟩ + qk sin⟨k, ·⟩ ∈ Lf for every pk, qk ∈ k⊥ and
k ∈ ⟨m,n⟩, where ⟨m,n⟩ denotes the subgroup of Z3 generated by m,n.

Proof. The vectors {am, a′m, cn} generate R3 and span {am, a′m} = m⊥, so cn∧ (m∧n) ̸= 0. According
to Theorem 7, for every α, β ∈ R,

(αcn + βdn) cos⟨n, ·⟩+ (αdn − βcn) sin⟨n, ·⟩ ∈ Lf .

Or cn ∧ dn = 0, and so we can chose α, β such that αdn−βcn = 0, or cn ∧ dn ̸= 0, and so we can chose
α, β such that

(αdn − βcn) ∧ (m ∧ n) = 0.

So without loss of generality we can assume that

cn cos⟨n, ·⟩+ dn sin⟨n, ·⟩ ∈ Lf , (11)

with cn ∧ (m ∧ n) ̸= 0 and dn ∈ span {m ∧ n}. Then according to the third formula of Proposition 2
applied with (am, bm = 0, cn, dn), and because ⟨m, dn⟩ = 0,

pm+n cos⟨m+ n, ·⟩+ qm+n sin⟨m+ n, ·⟩ ∈ Lf ,

with {
pm+n = −⟨n, am⟩dn ∈ span {m ∧ n}
qm+n = −⟨m, cn⟩am + ⟨n, am⟩cn.

Thanks to the same formula applied with (a′m, b
′
m = 0, cn, dn),

p′m+n cos⟨m+ n, ·⟩+ q′m+n sin⟨m+ n, ·⟩ ∈ Lf ,

with {
p′m+n = −⟨n, a′m⟩dn ∈ span {m ∧ n}
q′m+n = −⟨m, cn⟩a′m + ⟨n, a′m⟩cn.

Because ⟨m, cn⟩ ̸= 0 and span {am, a′m, cn} = R3, then necessarily qm+n ∧ q′m+n ̸= 0. Because pm+n ∧
p′m+n = 0, then necessarily for every α, β ∈ R,

(p′m+n, q
′
m+n) ̸= (αpm+n + βqm+n, αqm+n − βpm+n).

According to Proposition 3,

am+n cos⟨m+ n, ·⟩+ bm+n sin⟨m+ n, ·⟩ ∈ Lf , (12)

for every am+n, bm+n ∈ (m+n)⊥. So by iteration of this computation we can obtain that ak cos⟨k, ·⟩ ∈
Lf for every ak ∈ k⊥ and k ∈ mN+ nN. Moreover, it is also verified that

am cos⟨−m, ·⟩ ∈ Lf , a′m cos⟨−m, ·⟩ ∈ Lf , cn cos⟨−n, ·⟩ − dn sin⟨−n, ·⟩ ∈ Lf ,

so in the same way we obtain that ak cos⟨k, ·⟩ ∈ Lf for every ak ∈ k⊥ and k ∈ mZ+ nZ.

Proposition 5. If span {am, bm | m ∈ Mf} = R3 and spanMf = R3, and if there exists a non-zero
mode ℓ ∈ Γ, pℓ, p

′
ℓ ∈ ℓ⊥ such that pℓ ∧ p′ℓ ̸= 0 and such that{

pℓ cos⟨ℓ, ·⟩ ∈ Lf ,
p′ℓ cos⟨ℓ, ·⟩ ∈ Lf ,

then pk cos⟨k, ·⟩+ qk sin⟨k, ·⟩ ∈ Lf , for every pk, qk ∈ k⊥ and k ∈ Γ.
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Proof. Because span {am, bm | m ∈ Mf} = R3 and spanMf = R3, there exist a non-zero mode m ∈
Mf and am, bm ∈ m⊥ such that

am cos⟨m, ·⟩+ bm sin⟨m, ·⟩ ∈ Lf ,

and span {am, pℓ, p′ℓ} = R3. So according to Proposition 4, pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and
k ∈ mZ+ ℓZ. Because am /∈ ℓ⊥ and ⟨m, am⟩ = 0, then m ∧ ℓ ̸= 0. Because spanMf = R3, there exist
a non-zero mode Mf , and an, bn ∈ n⊥, an ̸= 0 such that

an cos⟨n, ·⟩+ bn sin⟨n, ·⟩ ∈ Lf ,

and span {m, ℓ, n} = R3. If ⟨m, an⟩ = ⟨ℓ, an⟩ = 0, then an = 0. If we assume without loss of generality
that an /∈ m⊥, according to Proposition 4, pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and k ∈ mZ + nZ. By
iteration, we obtain that pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and k ∈ mZ+ nZ+ ℓZ. Let k′ ∈ Γ be an

other mode and ak′ , bk′ ∈ k′
⊥
, ak′ ̸= 0 such that

ak′ cos⟨k′, ·⟩+ b′k sin⟨k′, ·⟩ ∈ Lf .

Necessarily there exists one mode in {m,n, ℓ}, for example m, such that ak′ /∈ m⊥. Then k′ ∧m ̸= 0
and pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and k ∈ k′Z + mZ. So in particular for every k ∈ Mf ,
pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥. Let k1, k2 ∈ Mf be two non-zero modes. If k1 ∧ k2 ̸= 0, according
to the second formula of Proposition 2,

(⟨k1, ak2⟩ak1 − ⟨k2, ak1⟩ak2) cos⟨k1 + k2, ·⟩ ∈ Lf , (13)

for every ak1
∈ k⊥1 , ak2

∈ k⊥2 . So it is clear that pk1+k2
cos⟨k1+k2, ·⟩ ∈ Lf for every pk1+k2

∈ (k1+k2)
⊥.

If k1 ∧ k2 = 0, then there exists m ∈ Mf such that m ∧ k1 ̸= 0 and such that for every a ∈ k⊥1 and
b ∈ m⊥, {

(⟨m, a⟩b− ⟨k1, b⟩a) cos⟨k1 +m, ·⟩ ∈ Lf ,
(⟨−m, a⟩b− ⟨k2, b⟩a) cos⟨k2 −m, ·⟩ ∈ Lf ,

and so we also prove that pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and k ∈ ⟨k1, k2⟩. This procedure can be
generalized by recurrence and we obtain that pk cos⟨k, ·⟩ ∈ Lf for every pk ∈ k⊥ and k ∈ Γ.

Proof of Theorem 8. If span {am, bm | m ∈ Mf} = R3 and spanMf = R3, according to Proposition 5,
it is sufficient to prove that there exists a non-zero mode ℓ ∈ Γ such that pℓ cos⟨ℓ, ·⟩ ∈ Lf for every
pℓ ∈ ℓ⊥. There are two possible situations:

1. Either there exist m,n ∈ Mf such that m ∧ n ̸= 0,

aj cos⟨j, ·⟩+ bj sin⟨j, ·⟩ ∈ Lf , j ∈ {m,n} ,

and such that span {am, bm, an} = R3.

2. Or there exist m,n, k ∈ Mf such that span {m,n, k} = R3,

aj cos⟨j, ·⟩+ bj sin⟨j, ·⟩ ∈ Lf , aj ∧ bj = 0, j ∈ {m,n, k} , (14)

and such that span {am, an, ak} = R3.

Let us consider both cases.
1. Because span {am, bm, an} = R3, necessarily am ∧ bm ̸= 0. First we assume that an ∧ bn ̸= 0.
According to Theorem 7, for every α, β ∈ R,

(αaj + βbj) cos⟨j, ·⟩+ (αbj − βaj) sin⟨j, ·⟩ ∈ Lf j ∈ {m,n} .
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Thanks to an adapted choice of α, β, we can assume that bm, bn ∈ span {m ∧ n}. According to the
third formula of Proposition 2 applied with (am, bm, an, bn),

pm+n cos⟨m+ n, ·⟩+ qm+n sin⟨m+ n, ·⟩ ∈ Lf ,

with {
pm+n = ⟨m, an⟩bm − ⟨n, am⟩bn ∈ span {m ∧ n}
qm+n = −⟨m, an⟩am + ⟨n, am⟩an.

But it is also true that an cos⟨−n, ·⟩ − bn sin⟨−n, ·⟩ ∈ Lf , so again we can apply the third formula of
Proposition 2 with (pm+n, qm+n, an,−bn), and we obtain that a′m cos⟨m, ·⟩+ b′m sin⟨m, ·⟩ ∈ Lf , with{

a′m = −⟨m, an⟩2am
b′m = −⟨m, an⟩2bm + ⟨n, am⟩⟨m, an⟩bn.

By assumption an ∧ bn ̸= 0, so bn ̸= 0. Moreover, am, an /∈ span {m ∧ n}, so ⟨n, am⟩⟨m, an⟩ ̸= 0. Then
(a′m, b

′
m) ̸= (αam+βbm, αbm−βam) for every α, β ∈ R and am, a

′
m ̸= 0, so according to Proposition 3,

pm cos⟨m, ·⟩ ∈ Lf for every pm ∈ m⊥. If we assume that an ∧ bn = 0, then an cos⟨n, ·⟩ ∈ Lf . We
can still assume that bm ∧ (m ∧ n) = 0, and because span {am, bm, an} = R3, necessarily an ∧ bm ̸= 0.
Finally we obtain that

pm+n cos⟨m+ n, ·⟩+ qm+n sin⟨m+ n, ·⟩ ∈ Lf ,

with {
pm+n = ⟨m, an⟩bm
qm+n = −⟨m, an⟩am + ⟨n, am⟩an.

But m ∧ (m+ n) ̸= 0, am ∧ bm ̸= 0, pm+n ∧ qm+n ̸= 0 and span {pm+n, qm+n, am} = R3, so according
to the previous computations, am+n cos⟨m+ n, ·⟩ ∈ Lf for every am+n ∈ (m+ n)⊥.

2. If aj cos⟨j, ·⟩ + bj sin⟨j, ·⟩ ∈ Lf and aj ∧ bj = 0, then according to Proposition 3 aj cos⟨j, ·⟩ ∈ Lf .
So in this case there exist m,n, k ∈ Mf such that span {m,n, k} = R3 and such that

am cos⟨m, ·⟩ ∈ Lf , an cos⟨n, ·⟩ ∈ Lf , ak cos⟨k, ·⟩ ∈ Lf ,

with span {am, an, ak} = R3. According to the second formulas of Proposition 2, pm+n cos⟨m+ n, ·⟩ ∈
Lf and pn+k cos⟨n+ k, ·⟩ ∈ Lf with

pm+n = ⟨m, an⟩am − ⟨n, am⟩an, pn+k = ⟨n, ak⟩an − ⟨k, an⟩ak.

If ⟨m, an⟩ = 0 then an ∈ span {m ∧ n} and necessarily ⟨n, am⟩ ̸= 0. So pm+n ̸= 0 and by symmetry
pn+k ̸= 0. Then according to the same formulas,

pm,n,k cos⟨m+ n+ k, ·⟩ ∈ Lf , pn,k,m cos⟨n, k,m, ·⟩ ∈ Lf ,

with {
pm,n,k = ⟨k, pm+n⟩ak − ⟨m+ n, ak⟩pm+n,
pn,k,m = ⟨m, pn+k⟩am − ⟨n+ k, am⟩pn+k.

If ⟨m+n, ak⟩ = 0 and ⟨k, pm+n⟩ = 0, then ak, pm+n ∈ span {(m+ n) ∧ k}, and so ak ∧ pm+n = 0. But
pm+n ∈ span {am, an} and span {am, an, ak} = R3, so necessarily ⟨m+n, ak⟩ ̸= 0 or ⟨k, pm+n⟩ ̸= 0 and
pm,n,k ̸= 0. By symmetry pn,k,m ̸= 0. By computation we obtain that pm,n,k = −⟨m+ n, ak⟩⟨m, an⟩am + ⟨m+ n, ak⟩⟨n, am⟩an + (⟨m, an⟩⟨k, am⟩ − ⟨n, am⟩⟨k, an⟩)ak,

pn,k,m = (⟨m, an⟩⟨n, ak⟩ − ⟨m, ak⟩⟨k, an⟩)am − ⟨n+ k, am⟩⟨n, ak⟩an + ⟨n+ k, am⟩⟨k, an⟩ak.
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If pm,n,k ∧ pn,k,m = 0, then there exist a non-zero λ ∈ R such that −⟨m+ n, ak⟩⟨m, an⟩ = λ(⟨m, an⟩⟨n, ak⟩ − ⟨m, ak⟩⟨k, an⟩)
⟨m+ n, ak⟩⟨n, am⟩ = −λ⟨n+ k, am⟩⟨n, ak⟩
⟨m, an⟩⟨k, am⟩ − ⟨n, am⟩⟨k, an⟩ = λ⟨n+ k, am⟩⟨k, an⟩.

And so
λ⟨n+ k, am⟩⟨n, ak⟩⟨m, an⟩ = λ⟨n, am⟩(⟨m, an⟩⟨n, ak⟩ − ⟨m, ak⟩⟨k, an⟩),

which leads to
⟨k, am⟩⟨n, ak⟩⟨m, an⟩ = −⟨n, am⟩⟨m, ak⟩⟨k, an⟩. (15)

Lets us prove that this cannot be verified in this case. By computation we obtain that

det

a1m a2m a3m
a1n a2n a3n
a1k a2k a3k

m1 n1 k1

m2 n2 k2

m3 n3 k3

 = det

 0 ⟨n, am⟩ ⟨k, am⟩
⟨m, an⟩ 0 ⟨k, an⟩
⟨m, ak⟩ ⟨n, ak⟩ 0


= ⟨n, am⟩⟨k, an⟩⟨m, ak⟩+ ⟨k, am⟩⟨m, an⟩⟨n, ak⟩.

Equation (15) is verified if and only if this determinant is equal to zero, which is impossible because
span {am, an, ak} = span {m,n, k} = R3. Then necessarily pm,n,k ∧ pn,k,m ̸= 0.

In both cases we conclude thanks to Proposition 4.
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