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Abstract

We study controlability issues for the group of volume-preserving diffeomorphisms of the torus
T? for system & = f(z) 4 u(t), where f is a fixed divergence free vector field on T¢ and u(t) are
constant vector fields which generate translations of the torus. Main results concern d equals two

or three.
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1 Introduction

Let TY = R?/27Z? be the d-dimensional torus. Translations of the torus are generated by constant
vector fields. Let f be a non constant divergence free vector field on T?: it generates a one-parametric
group of volume-preserving diffeomorphisms. In this paper, we try to understand which transforma-
tions of T¢ can be reached if we perturb f by constant fields (with the constant depending on time),
mainly for d =2 and d = 3.

The answer is surprisingly simple in many cases and we hope that it might be useful in the mathe-
matical fluid dynamics, in particular, for the study of turbulent flows. In the next paper, we are going
to treat random perturbations.
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S
We start with a general linear in control system & = ) u;Fj;(z) on a compact manifold M.
j=1
Theorem [I] characterizes the flows on M which can be uniformly approximated by the flows generated
S

by a time-varying ordinary differential equation of the form & = > u,;(¢)F;(z). These are exactly the

j=1
flows generated by equations @ = V;(x), where V; € Lie{F, ..., Fs}.

In Theorem [2] we deal with the flows which preserve a fixed volume form on M. Such flows are
generated by the divergence free vector fields. Let VecgM be the space of divergence free vector
fields. Theorem [2| states that the condition VecoM C Lie{F, ..., Fs} is sufficient for the possibility to

transfer any finite ensemble of mutually distinct points x; € M, i = 1,..., N, to any other sequence
S
yi € M, i=1,...,N, by the flow generated by the equation of the form & = ) w;(t)F;(x), where the
j=1
control (u1(-),...,us(:)) and the transfer time are the same for all z;, i =1,...,N.

General theorems 1-2 are rather simple corollaries of earlier results. We need them to study the
affine in control system & = f(z)+w that is our main objective. Here u is an arbitrary constant vector
field on the torus T¢.

Let f(z) = Y. pme’™® and M; = {m € Z* | pn, # 0}. Theorem [3{and Theorem [4| concern the

meZ
case where #M; < oo and span{f(z) | z € T¢} = spanM; = R9.

In Theorem |3| we describe the closure of the Lie subalgebra of VecoT¢ generated by the fields f +u
for d equals two or three. This closure is equal to the space of fields g € VecoT? such that M, is
contained in the subgroup of Z? generated by M -

In Theorem (4] we describe the closure of the attainable set of the system & = f(x)+ w in the group
of volume-preserving diffeomorphisms of T¢. It appears that the closure of the attainable set depends
only on the Lie algebra computed in Theorem [3] in spite of the fact that our system is not linear in
control, it has a nontrivial drift f while its linear part u is commutative.

Finally, Theorem [5| concerns the controllability for finite ensembles of points on T?. Here we do not
need the set M/ to be finite. The theorem states that for d equals two or three there exists a residual
subset of VecoT? such that the system & = f(z) + u can transfer any finite ensemble of mutually
distinct points to any other ensemble with the same number of points. On the other hand, according
to the same theorem, whatever f we take, the transfer of at least two points ensemble may require
arbitrary long time. No a priori time bound is possible.

These are our main results. In Section @ the Lie algebra generated by f 4 u, u € R?, is computed
also in the case where spanM s # R (see Theorem |§| and Theorem .

Remark 1. Admissible controls in this paper are measurable locally bounded vector functions but all
results remain valid with much smaller classes of admissible controls. Indeed, we say that a sequence
of locally integrable vector functions u,(-) converges to u(-) on the segment [0,T) in the sliding topology

I3 un(t) — u(t) dt

The map which sends the control u(-) to the flow PO s continuous in the sliding topology (see,
for instance, Lemma 8.10 in [5]) and all our results survive if we use only controls from an everywhere
dense subset in the sliding topology. For example, it is sufficient to use only controls from the space of
vector polynomials or trigonometric polynomials, or piecewise constant vector functions, or even from
the set of piecewise constant vector functions with only one nonzero coordinate in every time moment.

if |unllLr are uniformly bounded and — 0 uniformly fort € [0,T] as n — co.

To conclude the introduction, we have to mention that various aspects of the controllability on the
group of diffeomorphisms were studied in [2, [6] [7} 8} [9, 10} 111, 12} 13}, 14] and many other papers.



2 Motion planning in the group of diffeomorphisms and con-
trollability of finite ensembles of points

Let M be a compact Riemannian manifold of class C*° and dimension n € N. Let us consider the
linearly controlled equation

izZuj(t)Fj(ac), u(t) = (ui(t),...,us(t)) e R®, x € M, (1)
j=1

where the measurable map ¢ — wu(t) is locally bounded. The flow of at time t is denoted by
Pt“('). Considering the family of smooth vector fields F := {Fy, ..., Fs}, we would like to understand
which trajectories in the group of diffeomorphisms of M could be approximated by the flows t — Ptu(‘),
uniformly on any time segment. This is a problem of motion planning in the group of diffeomorphisms.

Let us consider N € N* distinct points of M, v = (71,...,7n) € MY, where MY = MY\ AN and
AN = {7 e MN |3k # b,y = ’yg}. If we apply the dynamic to the initial positions (v1,...,vn),
the configuration of these points at time ¢ > 0 is determined by (Ptu(')(vl), ce Ptu(')(*yN)). We would
like to study properties about controllability of finite ensembles of points depending on F.

2.1 Motion planning in the group of diffeomorphisms

In what follows, M is a compact Riemannian manifold of class C*°. Given a smooth tensor field
q+— wq, q € M, where w, € (T,M)®* @ (T;M)W, the norms ||w||m, m = 0,1,2,..., are defined as
follows:

lwllm = sup |Vewl,
qeM,i<m
where V is the covariant derivative. Here k = 1,2,..., £=0,1,2,..., and (T*M)®° = C>(M). The
seminorms || - ||,, define standard C'*°-topology on the space of smooth tensor fields of the prescribed

degree. Standard C'*°-topology on the group of diffeomorphisms is induced by the topology on C*°(M)
if we treat a diffeomorphism P : M — M as a linear operator P* on C*°(M), where P* : a —

aoP, ||Pll, = sup |P*a|m. More details about this formalism and chronological calculus can be
llallm <1

found in [Il Chap. 6].

Let VecM be the Lie algebra of smooth vector fields on M. Given F C VecM, LieF C VecM is
the Lie subalgebra generated by F and LieF is the closure of LieF in the standard topology.

A measurable map t — Vi, where V; € VecM, ¢t € R, is called a time-varying vector field if
[lve]|m is a locally bounded function of ¢ for any m > 0. Any time-varying vector field defines a flow

P, € Diff M, t € R, where Py = Id, %Pt(:c) = Vi(Pi(z)). We use the standard chronological notation

for this flow, P, = &xp fg V. dr. The following result is a corollary of [3, Th. 3].

Theorem 1. Let F = {Fi,...,Fs} C VecM. Lett — V; € LieF, t € [0,T], be a time-varying
vector field. Then for every m € N and € > 0 there exists a control t — u(t) = (ui(t),...,us(t)) €

L*>(]0,T],R?), such that the flow Pt“('), generated by control system and control u(-), satisfies

t
||exﬁ/ Vedr — PO, <e,  tel0,T).
0

k

Proof. Tt V; = >~ v;(t)X;, where X; € LieF, then the desired result is just the statement of Theorem 3
i=1

from [3]. On the other hand, we can uniformly and arbitrarily well approximate V; by such linear

combination in any norm || - ||,. Indeed, {V; | 0 <t < T} is a precompact set in the topology || - ||m
since this set is bounded in the norm || - ||;4+1. In other words, for every § > 0 there exists a finite set



{X1,..., X} C LieF such that the union of the radius J balls in norm || - ||, centered at X; covers
the set {Vz | 0 <t < T}. We present [0,T] as the disjoint union of subsets S;, [0,7] = |JS;, such

that | X; — Vi|lm < 9, for every t € S;, and we set

Ui(t)z 1 tes;
0 ¢S

k
then ||[Vi — > v;(£) X ||m < 68, for every t € [0, T]. O

i=1

Let us consider control system . The connected component of the identity in Diff M is denoted
by Diff’ M. For every measurable and locally bounded control u(-), the vector field ¢ — 2221 u;(t)F;
is a time-varying vector field according to the previous definition.

Definition 1. An element P € Diff° M is said to be approzimately reachable for system in time
t > 0 if for every m € N and € > 0, there exists a measurable and locally bounded control u(-) such

that the flow Ptu(‘), generated by system and control u(-), satisfies
1P = PO <e.

The set of approzimately reachable diffeomorphisms in time t > 0 is denoted by A; and A sztzoxt.
For every subgroup D C Diff® M, system 18 said to be approzimately controllable in D if A= D.

Let w be a fixed volume form on M and VecoM be the Lie algebra of divergence free vector fields
of M,
VecoM = {f € VecM | div,, f = 0}.

Any volume-preserving flow P, has a form P, = &xp fot frdr, where t — f; € VecoM. Then P; €

Diff° M. The set of volume-preserving flows of M is denoted by DiffoM. This is a subgroup of the
connected component of the identity Diff° M, and DiffoM C Diff® M.

Proposition 1. Let F = {Fy,..., Fs} be the family of admissible vector fields for system .
— If LieF = VecM, system is approzimately controllable in Diff® M.
— IfLieF D VecoM, system 1s approzimately controllable in Diffg M .
Proof. This is a corollary of Theorem O

2.2 Controllability of finite ensembles of points

In what follows, we study the controllability of finite ensembles of points in MY . Indeed system
can be lifted to a linear in control system defined on M by the controlled equations

;)'Z:Zuj(t)Fj(’yé)v u(t)ERS’ ge{lw'-aN}v (2)

where (y1,...,78) € MY and the map t > u(t) is measurable and locally bounded. The attainable
set at time t > 0 from v = (y1,...,yn5) € MY of system is defined by

A= {(BO ), PO () () € 1210, BN | € WY

Definition 2. For a general system of control we also define the attainable set from v by A, =
Ur>0Ay (t) (which coincides with A (t) for every t > 0 in the case of system (2)). Then a system is

said globally controllable (respectively globally controllable in time T > 0) if A, = MN (respectively if
Uo<t<T A4 () = MN) for every v € MN.



Definition 3. Let N € N*. System is said to be globally controllable (respectively globally con-
trollable in time T > 0) in the space of N-ensembles if system is globally controllable (respectively
globally controllable in time T) in M™Y.

The space MY has a structure of smooth manifold. For each v e MN , the tangent space TVM N
is isomorphic to T, M x --- x T, M. The N-fold of a vector field X € VecM is defined on MN by
XNy, 8) = (X(1), ..., X (7n)). If X is complete on M then X is also complete on MY . The
Lie bracket of N-folds X, V¥ verifies the formula [X", Y] = [X,Y]" and the same holds for the
iterated Lie brackets.

Definition 4. Let FVN = {FlN,,FSN} System s said to be Lie bracket generating at 7y if
{F(fy) | F e Lie}"N} = TWMN. It is Lie bracket generating if it is Lie bracket gemerating at every
v e MV,

As a consequence of Rashevsky-Chow theorem, if system is Lie bracket generating then it is
globally controllable, see e.g. [5l Th. 5.2 and Cor 5.2].

Theorem 2. Let F = {Fy,...,F,}. If VecoM C LieF, then the family FN is Lie bracket generating
in MM for every N € N*, and system 1s globally controllable in the space of N-ensembles.

Proof. Let v € M”, we consider the linear map

[ LieF —1T,MN
L X e XNy,

if it is surjective for every v € MY then system is Lie bracket generating and so it is globally
controllable. By assumption, if Im¢p,, denotes the image of ¢, then {X™(v) | X € VecoM } C Imep,,.

Recall that X € VecoM if and only if divX = 0. Let us prove that for every (ay,...,an) € T,Y]\AJN,
there exists X € VecoM such that XV (y) = (ai,...,an). Let V1,...,Vx be open neighborhoods in
M such that

Ye € Ve, VeV =0, k#£te{l,...,N},

and such that Vy is diffeomorphic to some open neighborhood O, C R",0 € O,. Locally, the vector
field X can be expressed in coordinates. The charts ¢, : Vy — Oy are chosen such that the expression
of the volume form w in coordinates is equal to dzi A ... Adx,. Given a = (aq,...,a,) € R" and two
neighborhoods @ C @’ of 0 in R”, we construct X € VecR” such that X = a on O, suppX C O’ and
divX = 0. Let x : R — R be a smooth cut-off function such that x(z) = ﬁ on O and suppy C O'.
We consider a (n — 2)-differential form on R™,

a=yx Z (=)™ 2apzy, + (—1)271amu)dx1 A... ZZE@ . ZzEm oA dxg,.
1<t<m<n

Then we compute da = Z:z:l Ymdry ... @m ...dx, and we check that 1, = a,, on O and suppy,, C
O'. Let us consider the vector field X = >"" _| 9,0, , then X = a on O and suppX C O'. Moreover,

dda = 0 = (divX)dzi A ... Adz,, so divX=0. The image of ¢, is dense in T,YMN, so the map is
surjective. O

3 Volume-preserving diffeomorphisms on T¢

In the following, we consider the torus T¢ = R?/27Z¢. Vector fields on T are naturally identified

with 2m-periodic d-vector functions on R?, i.e. the vector function f(z) = (f'(z),...,f%x)),z =
d .
(71,...,74) € R corresponds to the field > fl(x)%. In the following, we study an affine in control
i=1 '

system of the form
i=f(z)+ult), ult)eRrRy (3)



where f € VecoT? is any divergence free vector field and ¢ — u(t) is measurable and locally bounded.

Remark 2. By replacing f and u by f + ¢ and u — ¢ where c € R? is a constant, we can suppose that
Jpa [ =0 without changing the set A.

The flow at time ¢ of system is denoted by Ptu('). The set of approximately reachable elements
in the group of diffeomorphisms is denoted by A, see Definition We would like to understand
which volume-preserving diffeomorphisms could be approximated by the flows of the previous equation,
depending on the modes of the Fourier decomposition of f. In the following, we study a classification
of the approximately reachable set in the group of diffeomorphisms depending on f.

3.1 Subgroups of volume-preserving flows on T¢

Recall that Z? is an additive subgroup of R%. Let I' C Z? be a subgroup of Z% such that spanl’ = R?.

Let f(z) = Y pme’™® be the Fourier expansion of f, where p,, € C%, p_,, = pm. We set
meZd

Mfz{meZd|pm7é0},

Veco(T)r = {f € VecT* | divf =0, M; CT'}.

We omit the index T if I' = Z%. Tt is easy to check that Vecy(T?)r is a closed Lie subalgebra of VecT?.
Now we consider the subgroup I'* ¢ R¢ dual to T,

I*={zeR?|(z,y) €Z, VyeTl}.

We see that Z¢ C T'* and moreover, I'* /Z¢ is a finite group. Indeed, I' = AZ?, where A is a nonde-
generate matrix with integral entries. Then I'* = A* 179 where A* is the adjoint matrix of A, and
A*~! has rational entries.

Moreover, the group 27T* /27Z% acts freely and properly on T¢ by the translations and a divergence
free vector field f belongs to Veco(T%)r if and only if f commutes with this action. The same property
can be described in other way if we use the covering pr- : T¢ — T¢/2xI*. Here T¢/27T* is another
torus. We see that f € Veco(T?)r if and only if f = pf. g where g € Veco(T¢/27T*).

Any volume-preserving flow P; € DiffT¢, Py = Id, has a form P, = er) fg f- dr, where f, € VecoT?.
This is true for any torus, in particular for the torus T¢/27I*. We obtain that the flows generated
by the time varying vector fields from Veco(T?)r are exactly the lifts to T¢ of the volume-preserving
flows on T?/27T*.

We denote by DiffgT¢ the connected component of the identity in the group of volume-preserving
diffeomorphisms of T¢ commuting with the action of T'* /Z¢. Then

Diff( Tf: = {e?ﬁ/t frdr| fr € VeCo(Td)r}-
0

3.2 Approximation of volume-preserving diffeomorphisms by an affine in
control system

Recall that VecoT? is the set of divergence free vector fields of T¢. We define the subset U¢ C VecyT¢
as follows. A vector field f € VecyT? belongs to ¢ if

(i) #Mj < o0,
(ii) spanM; =R9,
(iii) span {f(z) |z € T4} = R%



Clearly, U4 = VecoT¢. Moreover, if d = 2, then property (ii) implies (iii). Indeed if f(z) =
Zmer A cO8(m, ) + by, sin{m, z),x € T?, then span { f(z) | z € T} = span {am,bm, | m € M}, If
d = 2 and spanM y = R?, there exist m,n € M such that a,,, a,, € R*\{0} and (m, a,,) = (n,a,) = 0.
Then necessarily span {a,, a,} = R2.

Here we present the main results for system (3]) with f € ¢ The proofs are given in the following
sections.

Theorem 3. Let d=2 ord =3 and f € B?. Let T' C Z? be the subgroup generated by My. Then

Lie{f 4+ u | u € R4} = Veco(T%)r.

Theorem 4. Under the conditions of Theorem @ the subgroup DiffgT¢ C DiffgT¢ is invariant for
system and moreover the system is approximately controllable in DiffoTgE.

Theorem 5. (i) Letd =2 ord = 3. There exists a residual subset R C VecoT? such that, for every
f€R and N € N*, system is globally controllable in the space of N -ensembles in T¢.

(ii) For every d > 2, f € VecoT?, N > 2, and T > 0, system s not globally controllable for time
smaller or equal than T in the space of N-ensembles in T.

4 Proof of Theorem {4l

In what follows, conesS is the convex cone generated by the subset S of a real vector space,

coneS = {Zaiai |a; €8S, a; > 0} ,
i

and dw is the standard volume form on the torus. Let f € C>°(T9 R?) be a smooth vector function
and 6 € T?. We define a vector function fs by the formula fp(z) = f(z +6), = € T%

Let t > 0. By applying the variation formula to system , see e.g. [B Section 2.7], we obtain a
decomposition of the flow

t
PO = [ fulndr
0" ] .t
= (ﬁ/ (Adejo “(S)d5> fd7.> o 610 u(s)ds
0

where (AdP~Y)f = P,f for any P € DiffT?. Let 0(t) = fot u(s)ds. Notice that e?® e DiffT? is the
translation by 6(t). So
(Adefd 08 £ = (Ade" D) f = foir):

Therefore,
¢
Pt“(') = (e?f)/ fo(T)dT) 0@,
0
The map
t
(0(),0) = (ﬁ / fe(r)d7> o€’
0
is continuous from L!([0,¢],RY) x R? to Diff M, and moreover the map

u(") € Lige (R4, RY) = (6(),0(1)) € L*([0, 8], RY) x R (4)



has dense image in L'([0,¢],R%) x R, so the closure of the attainable set verifies
t J—
{& [ e 100) € 20,0 RN o e v e R T
0

So the study of A is reduced to the study of the no more linear in the control system
T = fé(t) (l’), a(t) € Rd» (5)
where [, f(T)dT =0, see Remark and t — 0(t) € LL (R4, R®). By standard convexification, see [5]

loc
Th. 8.7], the flow of system can approximate the flow of any convex combination of vector fields
fo,0 € R%. By re-scaling of the time, the flow of system can approximate the flow of any convex
combination of vector fields fg,# € R? up to a positive multiplicative constant, that is, the flow of any

vector field in the convex subset cone { fy | § € R?}.
Lemma 1. Let f € C®(T%,R"). If [ f(x)dw(z) =0, then
Td

cone{fy | 0 € T} =span{fy | 6 € T4},
where the closure is taken in the C*°-topology.

Proof. Assume that cone{fy € T¢} is not a vector space. Then, according to the standard separa-
tion theorem for locally convex topological vector spaces, there exists ¢ € C°°(T9¢ R")* such that ¢
restricted to span{fy | § € T} is not identically 0 and (g, fo) <0, V0 € T

Note that 6 +— (¢, fg) is a continuous function on T¢, hence it is strictly negative on an open subset
of T¢. We have

0> [ (oufo) dw(®) =g, [ focuto))
On the other hand,

( fo dw(@)) ()= [ flz+0)dw®) = [ fO) dw®) =0, zecT
'H‘d 'H‘d Td

In other words, [ fodw(8) = 0 and we obtain a contradiction which proofs the lemma. O
Td
So to summarize, the flow of system can approximate the flow of any vector field of the form
afy +u, with o € R and §,u € R?. In particular, according to Theorem [} the flow of every vector
field in Lie {fs +u | 6,u € R4} belongs to A. According to Theorem |3} if f € ¢ and if ' denotes the
subgroup of Z¢ generated by M, then Lie {f + u | u € R4} = Vecy(T?)r and A = DiffgTE.

5 Proof of Theorem [5

(i) Let us prove the first statement of Theorem [5| Let d =2 or d = 3. We recall that
(TN = (THYN\ {1, .-, yn) € (TN | Tk # Ly = ye } -
For every f € VecoT?, we consider the lift of control system in the space of N-ensembles,
ij = flz;)+ult), u(t)eR%je{l,...,N}, (6)

where z(t) = (21(t),...,zx(t) € (TN and u(-) is measurable and locally bounded. As explained in
the proof of Theorem |4] the attainable set of system @ has the same closure of the attainable set of
the following system,

.’tj :a(t)f(xj)+u(t)7 a(t) GR,u(t) eRdvj € {17"'7N}7 (7)



where a(+) and u(-) are measurable and locally bounded. System (7)) is linear with respect to the
control. According to the Rashevski — Chow theorem, such a system is globally controllable if it is
Lie bracket generating. Let us prove that there exists a residual set R C VecoT? such that for every
f € R, for every N € N* system @ is Lie bracket generating in (Td)N.

Let us fix N € N*. We consider f € 0% such that I' = Z?, then according to Theorem 3|
Lie {f 4+ u | u € R?} = VecoT?. In this case, as explained in the proof of Theorem [2| system @ is Lie
bracket generating at every point of (T4)V.

Remark 3. Although the set {f eYd|T = Zd} is dense in VecoT?, it is not residual.

The manifold (T%)Y is the union of a countable number of compacts, (T4)N = |JKy;, where

Kn; € (’ﬂ‘d)N, i=1,2,.... The set of vector fields f € VecyT? such that system @ is Lie bracket
generating at every point of K ; is open. Moreover, we know that it is dense, hence it is open dense.
The desired residual set is just the intersection of these open dense subsets for all Ni.

(ii) Let us prove the second statement of Theorem Let d > 2, f € VecgT¢, N > 2 and T > 0.
Let t — z(t) = (x1(t),...,zn(t)) be the solution of (6). For every t € [0,7T], z1(t) # x2(t) because
z1(0) # x2(0), and so t — &(t) = In|z1(t) — z2(¢)|, t € [0,T], is well defined. Moreover, for every

t € [0,T],
(f(z1(t) — fza(t)), 21 () — 22(2))
|21(t) — 22(t)]

and so |€(t)| < €(0) — T||f]l1. Then |z1(t) — z2(t)| > e~ Tl |2 (0) — 25(0)| for every ¢ € [0,T], and so
the configurations where x1(t) and x2(t) are very close are not reachable in any time ¢ € [0, T].

£(t) = > =[Ifllx,

6 Proof of Theorem [3

The proof of Theorem [3|requires several steps and the study depends on the dimension of the considered
torus. For the bi-dimensional torus, the statement of Theorem [3]is proved by Theorem [6] and for the
tri-dimensional torus by Theorem

6.1 Bi-dimensional torus

On T2, the volume form dz A dy coincides with the symplectic form, and every divergence free vector
field can be written as the sum of a Hamiltonian vector field A € HamT? and a constant vector field.
Indeed, if we denote w = dx A dy, according to Cartan’s formula, the Lie derivative of w along any
vector field V' € VecT? verifies

va:(ivod+doiv)w=doivw.

If divV = 0, then iyw is closed, so there exists a constant vector field u = u10,, + u20,, such that
diyyyw =0, so V 4+ u verifies Ly ,w =0 and V + v is Hamiltonian.

For this reason we can assume that there exists a smooth function h € C°°(T?, R), associated to
the Hamiltonian vector field

— oh oh
h (z,y) = ——(z,y)@x + 7($,y)8y, (a:,y) € TZ’

oy ox
_>
such that f = h.
The non-zero modes that appear in the Fourier decomposition of the function h are exactly those

that appear in the decomposition of the vector field h. The set of modes in the decomposition of A is
denoted by My, and the subgroup of Z? generated by My, is denoted by I'. Note that the subgroups



of Z? generated by M;, and M are the same. We recall that for a,b € C*°(T? R), their Poisson

bracket is defined by
0a 0b  Oa Ob

dxdy  dyox’

and the arrow map C°(T?,R) — HamT? preserves the Lie algebra structure owing to the relation

m:[ﬁ,ﬂ.

{av b} =

Theorem 6. Let # M) < co.

— If spanl’ = R?, then

Lie {ﬁ +ulue Rd} = span {c@(m, ->,SH>1<7TL, ,05,0y | M € F} )

— If spanl is of dimension 1, then

Lie{ﬁ> +ulue Rd} = Lie{@%(m, ),sﬂi(m, ,05,0y | M € Mh}.

Throughout the proof of Theorem |6} we will use the notation £; = Lie {7 +uluce Rd}. We will

also make use of the following identity:

adj ady h = FoFay? £,  kleN. (8)

Lemma 2. If #M} < oo, then
£, = Lie {c?é(m, ), 0,0y | M € Mp}.

Proof. Let h = Zmth hme ™) be the finite Fourier decomposition of h, where the coefficients h,,

are complex. The function f is real-valued so h_,, = h,, for every m € M;. Let us prove that
&)%(mo, ) € £, for every my € My, By a straightforward computation,

% .
zaud%m h =— Z mihmel<m"§ € Ly,
meMp
and then for every «, 8 € R,

(a — adgw)(ﬁ - ad%y)ﬁ = Z (a—m2)(B— mfl)hmem € L.

meMy,

Let mo = (moz, moy) € M. For any m € Z? we denote |m| = |mo| if |my| = |mo.| and [my| = |mqg,|.
By iteration and thanks to a specific choice of a, 8 € R, we obtain that

[T k= ah o, =) =7 3 b e

mq,mgEMy, \m\=|mo\
Mg ZMOg M2y # M0y

where

my,maEMy,
Mg F Mg, M2y F Moy

10



and so Z\mlz\mol hme“m"§ € £;,. The function h is real-valued, so Ay, = h_,, for every m € My. If
mo = (Moz, Moy), we denote my = (Mo, —Moy), and then

Z Ry €M) = 2%e(hm062<m°" + hm661<m0">) c L.
|m|=|mo|
Let us consider the case where mgs, mo, 7 0. According to formula ,

I

2 . — _—
- Z hmaxay€< K :2m01m0ym€(hm06< 075_hm66< 07>) € L,

Im|=|mo|

so by linear combination Qe (A, e (™07 = Re (R, )c0&(mg, -) — I (f, )sin(mg, -) € £,. Taking the
derivative with respect to one variable we obtain that

—Re(hmg )Siti(mo, -) — I (humg )EO8(m0, ) € L,

and so by linear combination, (9Re(hm,)? + T (fim, )2)c08(mo, <) € L4, and so cob(myg, ) € £5,. The
other cases can be easily derived from the previous one. O

Lemma 3. Let m = (mi,mz) and n = (n1,n3). Let m An = ming — many. If m,n € My, and if
mAn#0, then co&(m +n,-) € L.

Proof. According to Lemma [2]

{sin(n, -), cos(m, -)} = (m A n)sin{m, -) cos(n,-) € £,

{cos(n, -),sin(m, -)} = (m A n)cos(m,-)sin(n, -) € L.
So by linear combination sin(m + n,-) € £,. By (§), cod(m+n,-) € & O
Proof of Theorem[6 If spanMy), is of dimension 1, we can assume up to an orthonormal change of
variables that a%h = 0. The Poisson Bracket of two functions that only depend on z is zero, so

Lie {co&(m,-), Dy, 8, | m € My} = span {c?é(m, -%sﬂi(m7 ),0,0y | M € Sh} .

If span My, = R?, let us introduce the sets Zy(h), k € N*, defined by Zo(h) = M}, and
Ti+1(h) =T (h) U{m +n|m,n € Ii(h),m An # 0}.

According to Lemma [3| co§(m,-) € £, for every m € UpenZy(h). But if spanM), = R2, it is easy to
see that UgenZy(h) = T'. Indeed every element m € I' can be written as a sum m = my +--- £ my,

with my,...,m, € My, Note that if m € M, then it is also verified that co$(—m, -), sﬂi(—m, ) € Lh.
If m = my1 + mo and if my A mg = 0, necessarily there exists ms € My, such that m; A mg # 0. Then
m1 +ms € UgenZg(h) and (mq +ms) Amg # 0, so my +ma +ms € UgenZi(h), and (m1+me+ms3) #
—mg, so finally mq + mg € UgenZi(h) and

5, = Lie {cob(m, -}, 8,8, | m € T} = span {c?é(m, 3, sin(m, ), 8y, 8, | m € r} .

Indeed the Lie algebra is composed of linear combinations and derivatives of the modes present in I,
which is closed. O

%
In order to check that I' = Z2, and so that Lie{ h +ulue Rd} is dense in VecyM, we can apply

the following criterion from [4, Lem. 1].

Lemma 4. The subgroup generated by My, is equal to Z? if and only if the greatest common divisor
(g.c.d) of the numbers {m An | m,n € My} equals 1.

11



6.2 Tri-dimensional torus

On T3, we use the Fourier decomposition of a divergence free vector field,

f= Z e = Z @y cOS(m, +) + by, sin{m, -),

meM; meM

where p;,, are linear combinations of d,,dy,0,. We identify the constant vector fields p,, with vectors
in C3, whose coordinates correspond to the coefficients in 8,,d,, .. In particular p,, = w The
components of the vector Re(p,,) (respectively IJm(p,,)) correspond to the real parts (respectively
to the imaginary parts) of the components of p,,. With these notations, and because divf = 0,
(M, pm) = (M, am) = (M, by,) = 0 for every m € M. The set of directions that are orthogonal to
m € Z3 is denoted by m* := {v € R3 | (m,v) = O}. For two vectors a,b € R3, their cross product is
denoted by a Ab. The subgroup of Z* generated by M ¢ is denoted by I'. The aim of this section is to

characterize the Lie algebra Lie {f +ulue RB}. We will use the notation £ = Lie {f +ulue ]RS}.

In the following, we will make use of the following formulas. For every m # 0,

adg, am cos(m, -) = —mygam, sin(m,-), adg, by, sin{m, -y = myb,, cos(m, -),
adp, @y, cos(m, -) = —mya,, sin(m, -), adg, by, sin(m, -) = myby, cos(m, -,
adp, am, cos(m, ) = —m.a., sin{m, -y, adg,_ by, sin{m, ) = m,b,, cos(m,-).

Lemma 5. Let # My < co. Then
£ = Lie{ay, cos(m, ) + by, sin(m, ), 0y, 0y,0, | m € M;}.

Proof. As for the bi-dimensional case, we explain how the isolated frequencies also belong to the Lie
algebra. Indeed, let mg € My, let us prove that

Ay €OS(M, *) + by, sin(mo, ) € L.
By a straightforward computation,

ad:ézf =— Z m2pme ™) € L4,
meMy

and so for every a € R,

af — ad%mf = Z (0 — m2)ppelim) e L.
meM;

If there exists my € M such that [mq,| # |mog|, then

(mi, —add)f = Y (mi, —mDpme’™ € 2;.
meMy

By iteration of such operation for every m; € My that verifies |mi4| # |moz|, we obtain that

[[ mi-add)f=5 3 puc'™ egy

mipeMyg meMyg

Imig|#Imog| [ma|=Imog|

where

mieMy
[myg|#lmog|

12



For any m € Z3, |m| = |mo| means that |m.| = |moz|, |my| = |moy| and |m,| = |mo.|. By iteration
and thanks to an adapted choice of «, 3, we obtain that

2 2 2 2 2 2 _ i(m,-
H (mi, —ady, )(m3, — aday)(msz —ady )f =7 Z pmet™) e £,

my,mg,m3zEM meMy

Mg |#lmog | Imay |#Imoy |, Ima 2 |#moz | [m|=|mg|
where

_ 2 2 2 2 2 2
= H (mlw - mOx)(mZy - mOy)(m?)z - mOz) 7é 0,
mq,mo,m3EM
Imagl#Imog | Imayl#Imoy | Ims, 1#Imoz]

and so

Z pmei<m"> €Ly

|m|=|mo]

Let us consider the case where mog, moy, mo, # 0. There are 2° = 8 modes m € Z* that verify

|m| = |mg|. The vector field f is real-valued, so D, = p—p, for every m € My. There are 4 couples of
opposite modes m € Z? that verify |m| = |my|, so
D P = 2R 00) 4 Y Relping ) € 2,
|m|=|mal k=1
where

mo,1 = (Moz, Moy, —Moz), Mo,z = (Moz, —Moy, Moz), Mo,z = (—Mox, Moy, Moz)-

Then
2

(mos +ads,) Z Pm e = 4(Re(py, et im0 + Z %e(pmo’ke“m“f’“'))) € £y

ml=|mo k=1

Moy

Then we can apply m%)y(moy +adp,) and %W(WOZ + ady,) to the previous vector field and we obtain
that 4
Re(Prmg € ™0 ) = @y €OS(Mg, ) + by SN (M0, ) € L.

The other cases can be easily derived from the previous one. O

The following formulas can be obtained by straightforward computations and will be useful for the
remaining proofs.

Proposition 2.

1) [pmsin{m, -}, p, cos(n, )] = {(m, pn)pm cos(m, -) cos(n, ) + (n, Py )pp sin{m, -) sin{n, -),
[Pm cos(m, -), pn sin(m, )] = —(m, pp)pm sin(m, ) sin(n, ) — (1, pm)pn cos(m, -) cos(n, -),
[P cos(m, ), pn, cos(m, )] = —(m, Pn)Dm sin{m, -) cos(n, -y + (N, Py )pr cos(m, -} sin(n, -),
[P sIn(m, -), pp sin{m, -)] = —{(m, pp)Pm cos{m, -} sin{n, ) — (N, Pm )P sin{m, -) cos(n, -).

2)  [pmsin(m, ), py sin(n, -)] — [pm cos(m, -), pr, cos(n, )] = ((M, Pn)Pm — (N, D) Pr) sin{m +n, -),
[P cOS(m, ), P, sI(n, Y] + [P sin{m, -}, P cos(n, )] = (M, Pr)Pm — (N D )Pn) cos{m +n, -).

3)  [am cos(m,-) + by, sin(m, -}, ¢, cos(n, -y + dy, sin(n, -)]
—[—am sin{m, ) + b, cos{m, ), —c,, sin(n, -y + d,, cos(n, -)]
= ({m, cn)bm + (M, dn>am — (nybpm)en — (N, am)dy) cos(m +n, )
+((m, dp)bm — (M, cn)am — (N, by)dy + (0, am)cy) sin{m + n, -).
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Theorem 7. Let #Mjy < co. If spanMy is of dimension 1 or if (spanMy is of dimension 2 and
span {am, by, | m € My} is of dimension 1), then

Lie {f +uluce R3} = span {(aam, + Bby,) cos(m, ) + (—fan, + aby,)sin(m, ), 05,0y, 0, | m € My, o, € R},
Proof. Let m € My be such that m # 0. According to Lemma [5 ar, cos(m, ) + by, sin(m, ) € £f. If

my # 0,

adg, (am cos(m, -) + by, sin{m, -)) = (—am sin{m, -) + by, cos(m, -)) € L.

My
—~
#0

Else we compute adg, or ads,_, and because m # 0,
— @, Sin(m, -) + by, cos(m, ) € Ly,
so for every «, B € R,
(@@, + Bby,) cos(m, -) + (aby, — Bay,)sin(m, ) € Ly,

and

Lie {an, cos(m, -) + by, sin(m, -), 0, 9y, 0. }
:Span{(aam + ﬁbm) COS<m, > + (abm - ﬁam) Sin<m7 '>7 am»ayv 82 ‘ O‘vﬂ € R} .

Let n € My be another mode of f, then a,cos(n,-) + b, cos(n,-) € £ according to Lemma

If spanM; is of dimension 1, then m An = 0 and mt = nt. If spanM ¢ is of dimension 2 and

if m An # 0, then spanM; = span{m,n}. But span{am,b, | m € My} is of dimension 1 and
(k,ar) = 0 for every k € My, so necessarily span {am,, b, | m € My} = span{m An}. In each case,
Uy Oy Gy by, € span {m A n}, and
<m7an> = <n7am> = <m7bn> = <nabm> =0.
Applying the third formula of Proposition [2]
[@m cos{m, ) + by, sin{m, -), a,, cos(n, -) + by, sin(n, )] = 0,

and

£ =span {(aam + Bbm,) cos(m, -) + (aby, — Baw)sin(m,-), 0z, 0y, 0, | m € My, a, 5 € R}.

Remark 4. If m € My, then
Vpm € m*, pm cos(m,-) € L5 <= Vp,, € m*, pm sin(m, -) € £y,
and
(VPrs @m € M, P cos(m, =) + gmsin(m,-) € £5) <= (Vp,, € m*, ppcos(m,-) € £;).
Theorem 8. Let #Mj; < co. If spanMy = R? and span {am, by, | m € My} =R3, then
Lie {f +uluce RS} = span {pm cos(m, -), ¢m sin(m, -), 0z, 0y, 0> | M € T, Py, g € mJ‘} .

Before going to the proof of Theorem [§] we need to introduce several propositions.
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Proposition 3. Let m € My be such that m # 0. If there exists am,, bm, al,, b, constant vector fields
such that anm,a’, # 0,
A, cOS(m, -) + by, sin{m, ) € Ly,
{ ay, cos(m,-) + b, sin(m,-) € £y,

!

and such that <Z/m> + <_aﬁ g) <Zm> for every a, B € R, then for every pm,gm € m™,

D cos{m, ) + g, sin(m, -) € £;.

Proof. According to Remark [d] this is sufficient to show that there exist two non-colinear vectors
Pm, qm € m=*, such that

(pmcos(m,-) € £y or ppsin(m,-) € £y),
and  (gmcos(m,-) € £5 or g¢pmsin(m,-) € L£y).

According to Theorem [7} for every a, 8 € R,

(aam + ﬁbm) COS<m, > + (abm - ﬂam) Sin<m7 > € Sfa 9
(a/al, + p'Y,) cos(m, -) + (a/b,, — B'al,) sin(m,-) € £. )

If a,, AD., =0 and a;, A by, = 0: Thanks to an adapted choice of a, 8, ¢/, 8/, we obtain that

am cos(m,-) € £¢ and al, cos(m,-) € £y,

and necessarily a,, A al, # 0, otherwise it would exist «, 8 € R such that a/, = aa,, + Bb,, and
b = aby, — Bam.

If a, ANV, =0 and if a,, A by, # 0: Thanks to an adapted choice of o and ', a), cos(m,-) € £;.
Moreover a,, A by, # 0, so there exist a, 8 such that

A + Bbm, = al,
(aby, — Bam,) A al, # 0.

But a,, Ab,, =0, so (aby, — Bam,) Abl, # 0. According to (9,

{ ay, cos(m, -) + (aby, — Bay,)sin(m, ) € L5,

ar, cos(m, ) + bl sin(m,-) € £, (10)

So (aby, — Bay, —b),)sin(m, ) € £; and (ab,, — Ban, — b)) Aal, # 0.
If a, AD,, # 0 and ap, A by, # 0: There exist «, 8 such that aay, + Bb, = a, and then necessarily
aby, — Bay, #bl,. As explained in the previous case,

(aby, — Bam, — by,) sin{m, -) € £.

If (aby, — Bam) AD,, =0, then b, sin(m, -) € £, and by linear combination we also have a,, cos(m, -),
which is sufficient because a], A b, # 0. Else, there exist v, d such that

Yo — Sam = by, — Bam, — b,
and

(Yam + 0bm,) cos(m, ) + (Ybp, — dan,) sin(m, -) € Ly,
(aby, — Bam, —b,)sin{m, -) € Ly,

SO (Y@, +6by,) cos(m, -) € £ and necessarily (Yam, +0bm ) A (vby —da.m,) # 0, because an, Aby, # 0. O
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Proposition 4. Lets m,n € My be such that m An # 0. If there exist a,,,al, € m* and c,,d,, € nt
such that

am cos(m,-) € L¢, an, cos(m,-) € L, ¢ycos(n, ) + dysin(n, ) € Ly,

and such that span {am, al,,c,} = R, then py cos(k,) + qx sin(k,-) € £; for every pi,qr € k* and
k € (m,n), where (m,n) denotes the subgroup of Z* generated by m,n.

Proof. The vectors {am,,a.,,c,} generate R and span {a,,,al,} = m*, so ¢, A(mAn) # 0. According
to Theorem [7] for every «, 8 € R,

(awey, + Bdy,) cosin, -) + (ady, — Bep) sin(n, -) € L.

Or ¢, Ad, = 0, and so we can chose «, # such that ad, — 8¢, =0, or ¢, Ad, # 0, and so we can chose
a, B such that
(ady, — Ben) A (m An) =0.

So without loss of generality we can assume that
cn cos(n, -) + dpsin(n, -) € £y, (11)

with ¢, A (m An) # 0 and d,, € span{m An}. Then according to the third formula of Proposition
applied with (am,, by = 0,¢,,d,), and because (m, d,) = 0,

DPrmtn COS(M + N, ) + G Sin(m +n,-) € Ly,
with

Pmtn = —(N, am)d, € span{m An}
Gmtn = — (M, Cp)am + (1, am)cn.
Thanks to the same formula applied with (al,,b., =0, cn,dy),
p;n-l-n COS<7’TL +n, > + qgn—i—n Sin<m +n, > € £f7
with
Proin = —(n,a;,)d, € span{m An}
q;n-i-n = 7<ma C7l>a’;n + <TL, a;”n,>c7l'

Because (m, ¢,) # 0 and span {ay,, a,,, ¢, } = R, then necessarily gmn A ¢, 4, 7 0. Because pyin A
Protn = 0, then necessarily for every a, 3 € R,

(p;nJrn? q7ln+n) # (Ozpm+n + quJr’rH aqurn - Bpern)
According to Proposition
Argn COS(M 41, ) + by sin(m +n, -) € Ly, (12)

for every am in,bmin € (m+n)*. So by iteration of this computation we can obtain that ay cos(k,-) €
Ly for every ay, € kt and k € mN + nN. Moreover, it is also verified that

am cos{(—m,-) € L, al, cos(—m,-) € L, ¢, cos(—n,-) — d,sin{—n,-) € L,
so in the same way we obtain that ay cos(k, ) € £ for every ax, € k* and k € mZ + nZ. O

Proposition 5. If span{an, b, | m e M} = R3 and spanM; = R3, and if there exists a non-zero
mode £ € T, py,p), € + such that py A pj, # 0 and such that

pecos(l,-) € Ly,
ppcos(l,-) € £y,

then py cos(k, ) + qp sin(k, ) € £, for every py,qr € k+ and k € T.
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Proof. Because span {a,, b, | m € M} = R3 and spanM ¢ = R3, there exist a non-zero mode m €
My and @y, by, € m~ such that

A, cOS(m, -) + by, sin(m, ) € Ly,

and span {a,, pe, p;} = R3. So according to Proposition l prcos(k, ) € £ for every pp € k' and
k € mZ + (7. Because a,, ¢ {* and (m am) = 0, then m A £ # 0. Because spanM s = R3, there exist
a non-zero mode My, and a,, b, € n*,a, # 0 such that

an cos{n, -) + b, sin(n,-) € Ly,

and span {m,ﬁ n} =R3. If (m,a,) = ({,a,) = 0, then a,, = 0. If we assume without loss of generality
that a, ¢ m™L, according to Proposition l pr cos(k, ) € £y for every py, € kt and k € mZ + nZ. By
iteration, we obtain that py cos(k,-) € £ for every py € k* and k € mZ + nZ + (Z. Let k' € T be an

other mode and ay/, by € k"{ ag # 0 such that
ays cos(k', ) + by sin(k’,-) € L.

Necessarily there exists one mode in {m,n, £}, for example m, such that agp ¢ m*. Then k' A m # 0
and pgcos(k, ) € £ for every p € k+ and k € k'Z + mZ. So in particular for every k € My,
pi cos(k, -) € L5 for every pi € kL. Let ky, ke € M be two non-zero modes. If k1 A ky # 0, according
to the second formula of Proposition [2}

(<k17 ak2>ak1 - <k27ak1>ak2) COS<k1 + k27 > € 2}"7 (13)

for every ag, € ki-,ax, € ky. So it is clear that p, 4x, cos(ki+kz,) € £ for every pr, +x, € (k1 +k2)*
If k1 A ko = 0, then there exists m € M such that m A ki # 0 and such that for every a € k:f- and
bemt,

((m,a)b — (k1,b)a) cos(k1 +m,-) € £y,

((—m, a)b — (ka,b)a) cos(ky —m, ) € Ly,

and so we also prove that py cos(k, ) € £ for every py, € k* and k € (k1, ko). This procedure can be
generalized by recurrence and we obtaln that py cos(k,-) € £ for every pi € k+ and k € T. O

Proof of Theorem[8 If span{ay,, by, | m € M} = R? and spanM ; = R3, according to Proposition
it is sufficient to prove that there exists a non-zero mode ¢ € T" such that p,cos(¢,-) € £y for every
pe € £+, There are two possible situations:

1. Either there exist m,n € M/ such that m An # 0,
ajcos(j, ) +bjsin(j,-) € £, j € {m,n},
and such that span {a,, by, a,} = R3.
2. Or there exist m,n, k € M such that span {m,n,k} = R3,
ajcos(j,-) +bjsin(j,-) € £¢, a; Ab; =0, je€{m,nk}, (14)
and such that span {a,,, a,, a} = R3.

Let us consider both cases.
1. Because span{am,,bm,an}t = R3, necessarily a,, A by, # 0. First we assume that a, A b, # 0.
According to Theorem [7} for every «, 8 € R,

(aa; + Bbj) cos(j, ) + (abj — Ba;)sin(j,-) € &5 j € {m,n}.
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Thanks to an adapted choice of «, 8, we can assume that b,,,b, € span{m An}. According to the
third formula of Proposition [2[ applied with (am,, bm, an,by),

DPrmtn COS(M + N, ) + Grpn Sin(m +n,-) € Ly,
with

pm+n = <m; an>bm - <naam>bn S Sparn {m A n}

dm+n = _<ma an>a7n + <n7 am>an'

But it is also true that a, cos(—n,-) — b, sin(—n,-) € £y, so again we can apply the third formula of
Proposition [2{ with (Pm+n, @m+n, @n, —byn), and we obtain that a},, cos(m,-) + b}, sin(m, -) € £, with

{ al, = —(m,a,)%an

b;n = _<7’TL, an>2bm + <’I’L, a’m><m’a’">bn'

By assumption a,, Ab, # 0, so b, # 0. Moreover, a,,, a, ¢ span{m A n}, so (n,a;,){(m,a,) # 0. Then
(al,, b)) # (atm + B, ab,, — Bay,) for every a, 8 € R and a,,, al,, # 0, so according to Proposition
Pm cos(m,-) € L for every p,, € m*. If we assume that a, A b, = 0, then a, cos(n, ) € £;. We
can still assume that b,, A (m An) = 0, and because span {a,,, by, an} = R?, necessarily a,, A b, # 0.
Finally we obtain that

DPrmtn COS(M + N, ) + Ggn Sin(m +n,-) € Ly,

with
Pm4n = <ma an>bm
Gmtn = —{M, ap)am + (N, Q) an.

But m A (m—+n) # 0, am Abm # 0, Pmin A Gmin 7 0 and span {Pmin, Gmin, @m } = R3, so according
to the previous computations, a,+n cos(m +n,-) € £ for every amin € (m +n)=*.

2. If a; cos(j,-) + b;sin(j,-) € £ and aj A b; = 0, then according to Proposition (3| a; cos(j,-) € £;.
So in this case there exist m,n, k € My such that span {m,n, k} = R and such that

amcos(m,-) € £y, apcos(n,-) € £y, acosik, ) € Ly,

with span {am,, a,,ar} = R?. According to the second formulas of Proposition [2, p,,1, cos(m +n,-) €
£¢ and pyypcos(n+ k,-) € £¢ with

Pmtn = (M, Qn)am — (N, G )An,  Ppgk = (N, a)an — (k, an)ag.

If (m,a,) = 0 then a,, € span{m An} and necessarily (n,a,,) # 0. So pm+n # 0 and by symmetry
Pn+k 7 0. Then according to the same formulas,

Pm,n,k COS<m +n+ kv > € ’gfv Pn.km COS<’ﬂ, kv m, > S 2f7
with

Pmn,k = <kapm+n>ak - <m +n, ak>pm+n7
Dnkym = (M Prtke) Gm — (N + K, G ) Drpke-

If (m+n,ar) = 0 and (k, pmin) = 0, then ag, Pmin € span{(m + n) A k}, and so ag A pmin = 0. But
Prman € span {am,, a,} and span {a,, a,,ar} = R3, so necessarily (m+mn,ax) # 0 or (k, ppmin) # 0 and
Dm.nk 7 0. By symmetry p, k.m 7 0. By computation we obtain that

Dk = —{(M + 10, ak) (M, an)am + (M + 1, ar) (N, am)an + (M, an)(k, am) — (0, am) (k, an))ag,

Pnkm = (<ma an><nﬂ ak> - <m7 ak><k7 an>)am - <n + kv a’m><nv ak>an + <TL =+ ka am><ka an>ak-
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If pmn,k A Dnk,m = 0, then there exist a non-zero A € R such that

—(m +n, ag)(m, an) = A((m, an)(n, ar) — (m, ar)(k, an))
(m+n,ar)(n,am) = —Xn+k,an)(n, ax)
(m, an)(k, am) — (0, am)(k, an) = Mn + k, am)(k, an).

And so
An 4k, am)(n, ag)(m,an) = Mn, am)((m, an)(n, ag) — (m, ag)(k, an)),

which leads to
(K, am)(n, ax)(m, an) = —(n, am)(m, ax)(k, an). (15)

Lets us prove that this cannot be verified in this case. By computation we obtain that

al a2 ad m' nt k! 0 nyam)  (k,am)
det [ a} a2 a m? n? k?| =det | (m,a,) 0 (k,an)
aj, @i a m3 nd K3 (m,ar) (n,a) 0

= (n, am){k,an){m, ag) + {k, am){m,an)(n, ag).

Equation is verified if and only if this determinant is equal to zero, which is impossible because
span {am, an, ar} = span {m,n, k} = R3. Then necessarily pm ok A Pnkm 7 0.
In both cases we conclude thanks to Proposition [4] O
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