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Abstract

We prove an abstract theorem giving a 〈t〉ε bound (∀ε > 0) on the growth of the
Sobolev norms in linear Schrödinger equations of the form iψ̇ = H0ψ+V (t)ψ when
the time t→∞. The abstract theorem is applied to several cases, including the cases
where (i)H0 is the Laplace operator on a Zoll manifold and V (t) a pseudodifferential
operator of order smaller than 2; (ii) H0 is the (resonant or nonresonant) Harmonic
oscillator in Rd and V (t) a pseudodifferential operator of order smaller than H0

depending in a quasiperiodic way on time. The proof is obtained by first conjugating
the system to some normal form in which the perturbation is a smoothing operator
and then applying the results of [MR17].

Keywords. linear Schrödinger operators, time dependent Hamiltonians, growth in
time of Sobolev norms.

1 Introduction

In this paper we study growth of Sobolev norms for solutions of the abstract linear
Schrödinger equation

i∂tψ = H0ψ + V (t)ψ , (1.1)

in a scale of Hilbert spaces Hr; here V (t) is a time dependent operator and H0 a time
independent linear operator. We will prove some abstract results ensuring that for any
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BP 92208, 44322 Nantes Cedex 3, France; e-mail: benoit.grebert@univ-nantes.fr

A. Maspero: International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste,
Italy; e-mail: alberto.maspero@sissa.it
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r ≥ 0 and any ε > 0, theHr norm of the solution grows in time at most as 〈t〉ε as t→∞,
where 〈t〉 :=

√
1 + t2. The main novelty of our results is that they allow (1) to weaken

the standard gap assumptions on the spectrum of H0, in particular to deal with some cases
where the gaps are dense in R, and (2) to deal with perturbations which are of any order
strictly smaller than that of H0 (see below for a precise definition).

The main applications are to the case where

(i) H0 is either the Laplace operator on a Zoll manifold (e.g. the spheres) or an an-
harmonic oscillator in R, while V is an operator depending arbitrarily on time and
having order strictly smaller than H0;

(ii) H0 is the (possibly nonresonant) multidimensional Harmonic oscillator and V (t) is
an operator which depends on time in a quasiperiodic way and has order strictly
smaller than H0.

Further applications will be presented in the paper.
We emphasize in particular the results (ii) which, as far as we know are the first control-

ling growth of Sobolev norms in higher dimensional systems without any gap condition.
The proof is based on the combination of the ideas of [Bam18, Bam17, BGMR18]

(which in turn are a developments of the ideas of [BBM14], see also [PT01, IPT05]) and
the results of [MR17]; precisely, for any positive N , we construct a (finite) sequence of
unitary time dependent transformations conjugating H0 + V (t) to a Hamiltonian of the
form

H0 + Z(N)(t) + V (N)(t) , (1.2)

where [H0;Z(N)] = 0 and V (N) is a smoothing operator of order N , namely an operator
belonging to L(Hs;Hs+N) for any s (linear bounded operators from Hs to Hs+N ). Then
we apply Theorem 1.5 of [MR17] to (1.2) getting the 〈t〉ε bound on the growth of Sobolev
norms.

We think that a further point of interest of our paper is that the conjugation to a system
of the form (1.2) is here developed in an abstract context, instead then in the framework
of classes of pseudodifferential operators adapted to the situation under study; this is the
main reason why we get an abstract theory directly applicable to many different contexts.

The main point is that we introduce an abstract graded algebra of operators whose
properties mimic the properties of pseudodifferential operators. The use of this framework
is made possible by the technique we develop to solve the homological equations met
in the construction of the conjugation of H to (1.2). Indeed, we recall that in previous
papers the smoothing theorem, namely the result conjugating the original system to (1.2)
was obtained by quantizing the procedure of classical normal form. Here instead, we
work directly at the quantum level, in particular solving at this level the two homological
equations that we find (see eqs. (3.17) and (3.24) below).
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It is worth to add a few words on the way we solve the homological equations. When
dealing with systems related to the applications (i), we assume that H0 = f(K0) where f
is a superlinear function and K0 is an operator s.t.

spec(K0) ⊂ N + λ , λ > 0 . (1.3)

In this case we solve the homological equation essentially by averaging over the flow
e−itK0 of K0. In turn this is made possible by the use of a commutator expansion lemma
proved in [DG97]. When dealing with the d dimensional harmonic oscillators instead, we
take

H0 =
d∑
j=0

νjKj ,

with Kj commuting linear operators, each one fulfilling the property (1.3) (think of Kj =

−∂2
xj

+ x2
j ) and νj > 0; then we consider operators of the form

eiτ ·K A e−iτ ·K

(where of course τ ·K := τ1K1 + ... + τdKd), remark that they are quasiperiodic in the
“angles” τ , and use a Fourier expansion in τ in order to solve the homological equation.

The study of growth of Sobolev norms and the related results on the nature of the spec-
trum of the Floquet operator has a long history: we recall the results by [How89, How92,
Joy94] showing that the Floquet spectrum of systems with growing gaps and bounded
perturbations is pure point, a result which implies boundedness of the expectation value
of the energy. The first 〈t〉ε estimates on the expectation value of the energy for system
of the form (1.1) was obtained by Nenciu in [Nen97] for the case of increasing gaps and
bounded perturbations (see also [BJ98, Joy96] for similar results), and by Duclos, Lev
and Sťovı́ček [DLS08] in case of shrinking gaps. In the case of increasing gaps, such re-
sults were improved recently by two of us (see [MR17]) who obtained the 〈t〉ε growth
of Sobolev norms also in the case of unbounded perturbations depending arbitrarily on
time, for example in the case where H0 = −∂2

x + x2k, the result of [MR17] allows to
deal with perturbations growing at infinity as |x|m with m < k − 1. In the present paper
we get the result for any m < 2k. The result of [MR17] also applies to perturbations
of the free Schrödiger equation on Zoll manifolds with perturbations of order strictly
smaller than 1. Here we deal with perturbations of order strictly smaller than 2. A study
of perturbations of maximal order has been done independently by Montalto [Mon17]
who got a control of the growth of Sobolev norms for the Schrödinger equation on T
with H = a(t, x) |−∂xx|M + V (t) with M > 1/2, a a smooth positive function and V a
pseudodifferential operator of order smaller than M .

Finally we recall that in [MR17] logarithmic estimates for the growth of Sobolev
norms were also obtained in the case of perturbations depending analytically on time.
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Here we do not attack the problem of getting logarithmic estimates, but we think that our
technique would also allow to get such estimates.

A remarkable further result was obtained by Bourgain [Bou99a, Bou99b] who ob-
tained a logarithmic bound on the growth of Sobolev norms for the Schrödinger equation
on Td (d = 1, 2) in the case of an analytic perturbation depending quasiperiodically on
time. Such a result is based on the use of a Lemma on the clustering of resonant sites (in
a suitable space time lattice) which does not seem to extend to different geometries. The
result of Bourgain was extended by Wang [Wan08] to deal with Schrödinger equations on
T perturbed by a potential analytic in time (but otherwise depending arbitrary on time)
and greatly simplified by Delort [Del10] who used it in an abstract framework which al-
lows to deal with the case of Td (any d ≥ 1) and also with the case of Zoll manifolds,
obtaining a growth bounded by 〈t〉ε (see also [FZ12] for analytic potentials on Td). We
also mention the reducibility result by [EK09] dealing with small quasiperiodic perturba-
tions of the free Schrödinger equation on Td; for such a system, the authors prove that
growth of Sobolev norms cannot happen, provided the frequency of the quasiperiodic so-
lution is chosen in a nonresonant set. At present our method does not allow to deal with
the Schrödinger equation on Td for d ≥ 2.

Concerning Harmonic oscillators in Rd with d > 1, a couple of reducibility results
are known, namely [GP16] in which the authors study small bounded perturbations of
the completely resonant Harmonic oscillator, and [BGMR18] in which we studied small
polynomial perturbations of the resonant or nonresonant Harmonic oscillator.

As far as we know no results are known on growth of Sobolev norms for perturbations
of the harmonic oscillator:

H0 := −∆ +
d∑
j=1

ν2
j x

2
j , (1.4)

with nonresonant frequencies νj . This is due to the fact that the differences between two
of its eigenvalues {λa}a∈Nd , namely

λa − λb = ν · (a− b)

are dense on the real axis and this prevents the use of any previous technique. As antic-
ipated above here we obtain the 〈t〉ε growth for the case of perturbation of order strictly
smaller than the order of the Harmonic oscillator.

Acknowledgments. During the preparation of this work, we were supported by ANR -15-
CE40-0001-02 “BEKAM” of the Agence Nationale de la Recherche. A. Maspero is also
partially supported by PRIN 2015 “Variational methods, with applications to problems in
mathematical physics and geometry”.
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2 Main results

2.1 An abstract graded algebra

We start with a Hilbert space H and a reference operator K0, which we assume to be
selfadjoint and positive, namely such that

〈ψ;K0ψ〉 ≥ cK ‖ψ‖2 , ∀ψ ∈ D(K
1/2
0 ) , cK > 0 ,

and define as usual a scale of Hilbert spaces by Hr = D(Kr
0) (the domain of the op-

erator Kr
0) if r ≥ 0, and Hr = (H−r)′ (the dual space) if r < 0. Finally we de-

note by H−∞ =
⋃
r∈RHr and H+∞ =

⋂
r∈RHr. We endow Hr with the natural norm

‖ψ‖r := ‖(K0)rψ‖0, where ‖·‖0 is the norm ofH0 ≡ H. Notice that for anym ∈ R,H+∞

is a dense linear subspace of Hm (this is a consequence of the spectral decomposition of
K0).

We introduce now a graded algebra A of operators which mimic some fundamental
properties of different classes of pseudo-differential operators. For m ∈ R let Am be a
linear subspace of

⋂
s∈R L(Hs,Hs−m) and define A :=

⋃
m∈RAm. We notice that the

space
⋂
s∈R L(Hs,Hs−m) is a Fréchet space equipped with the semi-norms: ‖A‖m,s :=

‖A‖L(Hs,Hs−m).
One of our aims is to control the smoothing properties of the operators in the scale

{Hr}r∈R. If A ∈ Am then A is more and more smoothing if m → −∞ and the opposite
as m→ +∞. We will say that A is of order m if A ∈ Am.

Definition 2.1. We say that S ∈ L(H+∞,H−∞) is N -smoothing if ∀κ ∈ R, it can be
extended to an operator in L(Hκ,Hκ+N). When this is true for every N ≥ 0, we say that
S is a smoothing operator.

The first set of assumptions concerns the properties of Am:

Assumption I:

(i) For each m ∈ R, Km
0 ∈ Am; in particular K0 is an operator of order one.

(ii) For each m ∈ R, Am is a Fréchet space for a family of filtering semi-norms
{℘mj }j≥1 such that the embedding Am ↪→

⋂
s∈R L(Hs,Hs−m) is continuous.

If m′ ≤ m then Am′ ⊆ Am with a continuous embedding.

(iii) A is a graded algebra, i.e ∀m,n ∈ R: if A ∈ Am and B ∈ An then AB ∈ Am+n

and the map (A,B) 7→ AB is continuous from Am ×An into Am+n.
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(iv) A is a graded Lie-algebra3 : if A ∈ Am and B ∈ An then the commutator [A,B] ∈
Am+n−1 and the map (A,B) 7→ [A,B] is continuous from Am ×An into Am+n−1.

(v) A is closed under perturbation by smoothing operators in the following sense: let A
be a linear map:H+∞ → H−∞. If there existsm ∈ R such that for everyN > 0 we
have a decompositionA = A(N)+S(N), withA(N) ∈ Am and S(N) isN -smoothing,
then A ∈ Am.

(vi) If A ∈ Am then also the adjoint operator A∗ ∈ Am. The duality here is defined by
the scalar product 〈·, ·〉 ofH = H0. The adjointA∗ is defined by 〈u,Av〉 = 〈A∗u, v〉
for u, v ∈ H∞ and extended by continuity.

It is well known that classes of pseudo-differential operators satisfy these properties,
provided one chooses for K0 a suitable operator of the right order (see e.g. [Hör85]).
In [Gui85] V. Guillemin has introduced abstract pseudo-differential algebras, called gen-
eralized Weyl algebras. For his purpose [Gui85] needs different properties than ours, but
obviously there is an overlap with our presentation.

Remark 2.2. One has that ∀A ∈ Am, ∀B ∈ An

∀m, s ∃N s.t. ‖A‖m,s ≤ C1 ℘
m
N(A) , (2.1)

∀m,n, j ∃N s.t. ℘m+n
j (AB) ≤ C2 ℘

m
N(A)℘nN(B) , (2.2)

∀m,n, j ∃N s.t. ℘m+n−1
j ([A,B]) ≤ C3 ℘

m
N(A)℘nN(B) , (2.3)

for some positive constants C1(s,m), C2(m,n, j), C3(m,n, j).

For Ω ⊂ Rd and F a Fréchet space, we will denote by Cm
b (Ω,F) the space of Cm

maps f : Ω 3 x 7→ f(x) ∈ F , such that, for every seminorm ‖ · ‖j of F one has

sup
x∈Ω
‖∂αx f(x)‖j < +∞ , ∀α ∈ Nd : |α| ≤ m . (2.4)

If (2.4) is true ∀m, we say f ∈ C∞b (Ω,F).
The next property needed is the following Egorov property, also well known for pseudo-

differential operators.

Assumption II: For any A ∈ Am , the map defined on R:
τ 7→ A(τ) := eiτK0 A e−iτK0 ∈ C0

b (R,Am).

Remark 2.3. From Assumption II one has that, for any B ∈ An, for any ` ∈ N,
ad`A(s)(B) ∈ C0

b (]− T, T [,An+(m−1)`), ∀T > 0. Here adA(B) := i[A,B].

3This property will impose the choice of the semi-norms {℘m
j }j≥1. We will see in the examples that the

natural choice (‖ · ‖m,s)s≥0 has to be refined.
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Remark that Assumption II is a quantum property for the time evolution of observ-
ables. Practically it follows from the time evolution of classical observables (Hamilton
equation) if some classes of symbols are preserved under the classical flows. Indeed one
might replace Assumption II by a weaker one (see Appendix B).

2.2 Perturbations of systems of order larger than 1

Now we state our spectral assumption on K0:

Assumption A : K0 has an entire discrete spectrum such that

spec(K0) ⊆ N + λ (2.5)

for some λ > 0.

Our second spectral assumption is essentially that the unperturbed operator H0 is a
function of K0. To state it precisely we need the following definition

Definition 2.4. A function f ∈ C∞(R) will be said to be a classical symbol of order ρ (at
+∞) if there exist real numbers {cj}j≥0 s.t. c0 ≥ 0 and for all k ≥ 1, all N ≥ 1, there
exists Ck,N s.t.

∣∣ dk
dxk

(
f(x)−

∑
0≤j≤N−1

cjx
ρ−j)∣∣ ≤ Ck,N |xρ−N−k|, ∀x ≥ 1.

We will denote by Sρ the space of classical symbols of order ρ.
We shall say that f is an elliptic classical symbol of order ρ if f is real and c0 > 0. We
shall write f ∈ Sρ+.
We shall say that f is a classical symbol of order −∞ if f ∈ Sm ∀m < 0. We shall write
f ∈ S−∞.

Some standard properties of classical symbols are recalled in Appendix A. We assume
that

Assumption B: There exists an elliptic classical symbol f of order µ > 1, such that

H0 = f(K0) . (2.6)

We will prove (see Lemma A.2) that (2.6) implies H0 ∈ Aµ, i.e. H0 is an operator of
order µ > 1.
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We come back to the Schrödinger equation defined by the time dependent Hamiltonian
H(t) := H0 + V (t) (see (1.1)). When the solution ψ(t) exists globally in time, we define
the Schrödinger propagator U(t, s), generated by (1.1), such that

ψ(t) = U(t, s)ψ , U(s, s) = 1 (2.7)

We are ready to state our main result on systems with increasing gaps:

Theorem 2.5. Assume that A is a graded algebra as defined in Section 2.1 and that K0,
H0 satisfy assumptions A and B. Furthermore assume that the perturbation V (t) with
domainH∞ is symmetric for every t ∈ R and satisfies

V ∈ C∞b (R,Aρ) , with ρ < µ . (2.8)

Then H(t) = H0 + V (t) generates a propagator U(t, s) s.t. U(t, s) ∈ L(Hr) ∀r ∈ R.
Moreover for any r > 0 and any ε > 0 there exists Cr,ε > 0 such that

‖U(t, s)ψ‖r ≤ Cr,ε 〈t− s〉ε ‖ψ‖r, ∀t, s ∈ R. (2.9)

This result extends a result by Nenciu [Nen97] for bounded perturbations (ρ = 0).
Furthermore in [MR17] two of us had already extended Nenciu’s result to unbounded
perturbations with the constraint ρ < min(µ− 1, 1). The main point is that we add here a
stronger spectral assumption: essentially the spectrum ofH0 is f(N+λ) for some smooth
function f (see Assumptions A and B).

As a final remark, we note that Theorem 2.5 gives also a proof of the existence and
of some properties of the propagator U(t, s), which in the framework of Theorem 2.5 are
not obvious.

2.3 Applications (i)

Zoll manifolds. Recall that a Zoll manifold is a compact Riemannian manifold (M, g)

such that all the geodesic curves have the same period T := 2π. For example the d-
dimensional sphere Sd is a Zoll manifold. We denote by4g the positive Laplace-Beltrami
operator on M and by Hr(M) = Dom(1 + 4g)

r/2, r ≥ 0, the usual scale of Sobolev
spaces. Finally we denote by Smcl (M) the space of classical real valued symbols of order
m ∈ R on the cotangent T ∗(M) of M (see Hörmander [Hör85] for more details).

Definition 2.6. We say that A ∈ Am if it is a pseudodifferential operator (in the sense of
Hörmander [Hör85]) with symbol of class Smcl (M).

In this case the operator K0 is a perturbation of order −1 of
√
4g (see Sect. 4.1), and

the norms ‖ψ‖r coincide with the standard Sobolev norms.

Corollary 2.7 (Zoll manifolds). Let V (t) be a symmetric pseudo-differential operator of
order ρ < 2 on M such that its symbol v ∈ C∞b (R;Sρcl(M)). Then the propagator U(t, s)

generated by H(t) = 4g + V (t) exists and satisfies (2.9).
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Anharmonic oscillators on R. The second application concerns one dimensional quan-
tum anharmonic oscillators

i∂tψ = Hk,lψ + V (t)ψ , x ∈ R , (2.10)

where Hk,l is the one degree of freedom Hamiltonian

Hk,l := D2l
x + ax2k , k, l ∈ N , k + l ≥ 3 , a > 0 . (2.11)

HereDx := i−1∂x. It is well known thatHk,` is essentially self-adjoint in L2(R) [HR82b].

Define the Sobolev spacesHr := Dom(H
k+l
2kl

r

k,l ) for r ≥ 0. We define now suitable operator
classes for the perturbation. Denote

k0(x, ξ) := (1 + x2k + ξ2l)
k+l
2kl .

Definition 2.8. A function f will be called a symbol of order ρ ∈ R if f ∈ C∞(Rx ×Rξ)

and ∀α, β ∈ N, there exists Cα,β > 0 s.t.

|∂αx ∂
β
ξ f(x, ξ)| ≤ Cα,β k0(x, ξ)ρ−

kβ+lα
k+l . (2.12)

We will write f ∈ Sρan.

As usual to a symbol f ∈ Sρan we associate the operator f(x,Dx) which is obtained
by standard Weyl quantization (see formula (4.2) below).

Definition 2.9. We say that F ∈ Aρ if it is a pseudodifferential operator with symbol of
class Sρan, i.e., if there exist f ∈ Sρan and S smoothing (in the sense of Definition 2.1) such
that F = f(x,Dx) + S.

In this case the seminorms are defined by

℘ρj (F ) :=
∑

|α|+|β|≤j

Cαβ ,

with Cαβ the smallest constants s.t. eq. (2.12) holds. If a symbol f depends on additional
parameters (e.g. it is time dependent), we ask that the constants Cα,β are uniform w.r.t.
such parameters.

Remark 2.10. With this definition of symbols, one has x ∈ S
l
k+l
an , ξ ∈ S

k
k+l
an , x2k + ξ2l ∈

S
2kl
k+l
an , k0(x, ξ) ∈ S1

an.

We get the following:

Corollary 2.11 (1-D anharmonic oscillators). Consider equation (2.10) with the assump-
tion (2.11). Assume also that V ∈ C∞b (R;Aρ) with ρ < 2kl

k+l
. Then the propagator U(t, s)

generated by H(t) = Hk,l + V (t) is well defined and satisfies (2.9).
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An example of admissible perturbation is V (t, x, ξ) =
∑

lα+kβ<2kl

aα,β(t)xαξβ with aα,β ∈

C∞b (R,R). In particular if we choose H0 = − d2

dx2
+ x4, we can consider unbounded

perturbations of the form x3g(t) and of course also xg(t) with g ∈ C∞b (R,R).

Remark 2.12. Our class of perturbations contains quite general pseudodifferential oper-
ators, however it is easy to see that multiplication operators (i.e. operators independent
of ∂x) must be polynomials in x with coefficients which are possibly time dependent.

In the similar problem of reducibility more general classes of perturbations have been
treated in [Bam17]. We did not try to push the result in that direction. This is probably
non trivial in an abstract framework like the one we are using here.

Remark 2.13. We think that our method should also allow to deal with some perturba-
tions of the same order as the main term. For example it should be treatable the case
where V is a quasihomogeneous polynomial of maximal order fulfilling some sign condi-
tion (more or less as in Theorem 2.12 of [Bam18]).

2.4 Perturbations of systems of order 1

In order to deal with perturbations of operators of order 1 we have to restrict to the case
where the dependence of the perturbation on time is quasiperiodic.

LetA := ∪m∈RAm be a graded Lie algebra satisfying Assumption I with a reference
operator K0.
Let K1, K2, · · · , Kd be d self-adjoint positive operators such that Kj ∈ A1, ∀1 ≤ j ≤ d.
Assume the following modified Assumption II:

Assumption II′:

(i) [Kj, K`] = 0 for any 0 ≤ j, ` ≤ d.

(ii) Denote K = (K1, · · · , Kd) and for τ ∈ Rd, τ ·K :=
∑

1≤j≤d

τjKj .

Then for any A ∈ Am, the map τ 7→ A(τ) := eiτ ·KAe−iτ ·K ∈ C∞b (Rd;Am).

Remark 2.14. For anyB ∈ An, for any ` ∈ N, one has ad`A(s)(B) ∈C∞b (Rd;An+`(m−1)).

We also adapt our spectral conditions:

Assumption A′: K = (K1, · · · , Kd) has an entire joint spectrum, spec(K) ⊆ Nd + λ for
some λ ∈ Rd, λ ≥ 0.
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Assumption B′: There exist {νj}dj=1, νj > 0 s.t.

H0 =
∑

1≤j≤d

νjKj , (2.13)

K0 = H0 . (2.14)

In order to fix ideas one can think of the case of Harmonic oscillators, in which Kj =

−∂2
j + x2

j , 1 ≤ j ≤ d.

Remark 2.15. Since the operators Kj are positive, the norm ‖.‖r defined using the oper-
ator K0 is equivalent to the norm defined using the operator K ′0 :=

∑d
j=1Kj .

We consider both the case where

ν := (ν1, ..., νd)

is resonant and the case where it is nonresonant. To state the arithmetical assumptions on
ν, we first recall the following well known lemma whose scheme of proof will be recalled
in the Appendix C.

Lemma 2.16. There exists d̃ ≤ d, a vector ν̃ ∈ Rd̃ with components independent over the
rationals, and vectors vj ∈ Zd, j = 1, ..., d̃ such that

ν =
d̃∑
j=1

ν̃j vj . (2.15)

Remark 2.17. For example
(i) if ν is nonresonant (namely ν ·k = 0 ∀k ∈ Zd implies k = 0), then ν̃ = ν and vj = ej ,
the standard basis of Rd;
(ii) if ν is completely resonant (namely ∀j one has νj = νkj with kj ∈ Z), then d̃ = 1;
e.g. if ν = (1, . . . , 1), then ν̃1 = 1, v1 = (1, . . . , 1).

Theorem 2.18. Assume that V (t) = W (ωt) with W ∈ C∞b (Tn,Aρ) a quasi-periodic
operator of order ρ < 1. Assume furthermore that (ν̃, ω) ∈ Rd̃+n is a Diophantine vector,
namely that there exist γ > 0, and κ ∈ R s.t.,∣∣ω · k + ν̃ · `

∣∣ ≥ γ

(|`|+ |k|)κ
, 0 6= (k, `) ∈ Zn+d̃ . (2.16)

Then the propagator U(t, s) generated byH(t) = ν ·K+W (ωt) exists and satisfies (2.9).

Remark 2.19. The vector ν̃ is defined up to linear combinations with integer coefficients;
clearly condition (2.16) does not depend on the choice of ν̃.

Remark 2.20. We recall that Diophantine vectors form a subset of Rn+d̃ of full measure
if κ > n+ d̃− 1.
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2.5 Applications (ii)

Relativistic Schrödinger equation on Zoll manifolds. We consider the reduced Dirac
equation on a Zoll manifold M with mass µ > 0

i∂tψ =
√
4g + µ ψ + V (ωt, x,Dx)ψ , t ∈ R, x ∈M .

As in the case of the Schrödinger equation on Zoll manifolds, Aρ is the class of pseudod-
ifferential operators with symbols in Sρcl(M) (see Definition 2.6).

In this case V is assumed to be quasi-periodic in time.

Corollary 2.21 (Relativistic Schrödinger equation on Zoll manifolds). Assume that V (t) =

W (ωt) with W ∈ C∞(Tn,Aρ) with ρ < 1. Assume furthermore that the non resonance
condition

|ω · k +m| ≥ γ

1 + |k|κ
, ∀0 6= k ∈ Zn , ∀m ∈ Z (2.17)

holds for some γ > 0 and κ. Then the propagator U(t, s) generated byH(t) =
√
4g + µ+

W (ωt) exists and satisfies (2.9).

Harmonic oscillator in Rd. Consider the quantum Harmonic oscillator

i∂tψ = Hνψ + V (t)ψ , x ∈ Rd (2.18)

Hν := −∆ +
d∑
j=1

ν2
j x

2
j , V (t) = W (ωt, x,Dx) . (2.19)

Here W is the Weyl quantization of a symbol belonging to the following class

Definition 2.22. A function f will be called a symbol of order ρ ∈ R if f ∈ C∞(Rd
x×Rd

ξ)

and ∀α, β ∈ Nd, there exists Cα,β > 0 s.t.

|∂αx ∂
β
ξ f(x, ξ)| ≤ Cα,β (1 + |x|2 + |ξ|2)ρ−

|β|+|α|
2 . (2.20)

We will write f ∈ Sρho.

The class (2.20) is the extension to higher dimensions of the class used in the anharmonic
oscillators (see Definition 2.8) and with k = l = 1.

Remark 2.23. With our numerology, the symbol of the harmonic oscillator is of order 1,
|ξ|2 +

∑
j ν

2
j x

2
j ∈ S1

ho, and not of order 2 as typically in the literature.

The classes Am are defined as in Definition 2.9, with symbols in the class Smho.

Corollary 2.24. Assume that ν is such that ν̃ fulfills (2.16), and that W ∈ C∞(Tn;Aρ)
with ρ < 1. Then the propagator U(t, s) of H(t) = Hν +W (ωt) exists and fulfills (2.9).
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Remark that after a trivial rescaling of the spatial variables,Hν =
∑d

j=1 νj(−∂2
j +x2

j),
thus the corollary is a trivial application of Theorem 2.18.

Remark 2.25. In the completely resonant case

H(1,...,1) = −∆ + |x|2 ,

one has ν̃ = 1 and the set of the ω′s for which (2.16) is fulfilled has full measure provided
κ > n.

Remark 2.26. We note that in the resonant case there have been exhibited examples of
polynomial growths of the Sobolev norms. In particular see [Del14] and [BGMR18] for
periodic in time perturbations; of course in such examples the frequency ω does not fulfill
(2.16). Finally we recall also [BJLPN], where some some random in time perturbations
are considered.

3 Proofs of the abstract theorems

3.1 Scheme of the proof

As explained in the introduction, the main step of the proof consists in proving a theorem
conjugating the original Hamiltonian to a Hamiltonian of the form (1.2); this will be done
in Theorem 3.8. Subsequently we will apply Theorem 1.5 of [MR17], which essentially
states that, if H(t) is such that for some N > −1

[H(t), K0]KN
0 ∈ C0

b (R,L(Hr)) , (3.1)

then ∃Cr,N > 0 such that

‖U(t, s)ψ‖r ≤ Cr,N 〈t− s〉
r

1+N ‖ψ‖r , ∀t, s ∈ R . (3.2)

We come to the algorithm of conjugation of the original Hamiltonian to (1.2). Before
discussing it, we need to know the way a Hamiltonian is changed by a time dependent
unitary transformation. This is the content of the following lemma.

Lemma 3.1. LetH(t) be a time dependent self-adjoint operator, andX(t) be a selfadjoint
family of operators. Assume that ψ(t) = e−iX(t)ϕ(t) then

iψ̇ = H(t)ψ ⇐⇒ iϕ̇ = H̃(t)ϕ (3.3)

where

H̃(t) := eiX(t) H(t) e−iX(t) −
∫ 1

0

eisX(t) Ẋ(t) e−isX(t) ds . (3.4)
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This is seen by an explicit computation. For example see Lemma 3.2 of [Bam18].
A further important property giving the expansion of an operator of the form eiX(t) A e−iX(t)

in operators of decreasing order is stated in the following lemma.

Lemma 3.2. Let X ∈ Aρ with ρ < 1 be a symmetric operator. Let A ∈ Am with m ∈ R.
Then X is selfadjoint and for any M ≥ 1 we have

eiτX A e−iτX =
M∑
`=0

τ `

`!
ad`X(A) +RM(τ,X,A) , ∀τ ∈ R , (3.5)

where RM(τ,X,A) ∈ Am−(M+1)(1−ρ).
In particular ad`X(A) ∈ Am−`(1−ρ) and eiτXAe−iτX ∈ Am, ∀τ ∈ R.

The proof will be given in Sect. 3.2.
We describe now the algorithm which will lead to the smoothing Theorem 3.8; the

proof is slightly different according to the set of assumptions one chooses. We start by
discussing it under the assumptions of Theorem 2.5, namely Assumption A and B. Sub-
sequently we will discuss the changes needed to deal with Theorem 2.18.

We look for a change of variables of the form ϕ = eiX1(t)ψ whereX1(t) ∈ Aρ−µ+1 is a
self-adjoint operator which, due to the assumption ρ < µ, has order smaller then one. We
will check that we also have Ẋ1(t) ∈ Aρ−µ+1. Then ϕ fulfills the Schrödinger equation
iϕ̇ = H+(t)ϕ with

H+(t) := eiX1(t) H(t) e−iX1(t) −
∫ 1

0

eisX1(t) Ẋ1(t) e−isX1(t) ds

= H0 + i[X1(t), H0] + V (t) + i[X1(t), V (t)]− 1

2
[X1(t), [X1(t), H0]] + · · ·

−
∫ 1

0

eisX1(t) Ẋ1(t) e−isX1(t) ds.

In view of the properties of the graded algebra we have [X1, V ] ∈ A2ρ−µ, [X1, [X1, H0]] ∈
A2ρ−µ (Assumption I (iv)) and eisX1(t) Ẋ1(t) e−isX1(t) ∈ Aρ−µ+1 (Lemma 3.2), therefore
one has

H+(t) = H0 + i[X1(t), H0] + V (t) + V +
1 (t) , (3.6)

with V +
1 (t) ∈ C∞b (R,Amin(ρ−µ+1,2ρ−µ)).

Now we look for X1(t) s.t.

i[H0, X1(t)] = V (t)− 〈V (t)〉 , (3.7)

where 〈V (t)〉 is the average over τ of eiτK0V (t)e−iτK0 (see (3.18)), which in particular
commutes with K0. We will verify in Lemma 3.5 that there exists X1 s.t.

i[H0, X1(t)]− V (t) + 〈V (t)〉 ∈ Aρ−1 .
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Therefore using such a X1 to generate a unitary transformation, we get

H+(t) := H0 + 〈V (t)〉+ V +(t) , (3.8)

where V +(t) ∈ C∞b (R,Aρ−δ) with

δ := min (1, µ− 1, µ− ρ) > 0 . (3.9)

Therefore V +(t) is a perturbation of order lower than V (t). Furthermore 〈V (t)〉 com-
mutes with K0.

Iterating this procedure we will establish an ”almost” reducibility result that will be
stated and proved in Subsect. 3.4.

Then, using Theorem 1.5 of [MR17], we immediately get Theorem 2.5.
In the case where H0 ∈ A1 the procedure has to be slightly modified since in this

case X1 and therefore Ẋ1 has the same order as V and thus it cannot be considered as a
remainder when analyzing H+. In this case one rewrites

H+(t) = H0 + i[X1(t), H0] + V (t)

+ i[X1(t), V (t)]− 1

2
[X1(t), [X1(t), H0]] + · · ·

− Ẋ1 −
∫ 1

0

(
i s [X1(t), Ẋ1(t)] + ....

)
ds,

so that eq. (3.6) is substituted by

H+(t) = H0 + i[X(t), H0] + V (t)− Ẋ1(t) + V +(t) , (3.10)

with V + ∈ Aρ−δ∗ ,
δ∗ := 1− ρ > 0 , (3.11)

so again it is more regular than V (t). Thus one is led to consider the new homological
equation

i[H0, X1(t)] + Ẋ1(t) = V (t)− 〈V (t)〉 , (3.12)

where 〈V (t)〉 has to commute with K0. In order to be able to solve such an equation we
restrict to the case of V (t) quasiperiodic in t and, as explained in the introduction, we
develop a procedure based on a suitable Fourier expansion to construct X1 and 〈V (t)〉.
The details are given in Lemma 3.7 which will ensure that such a homological equation
has a smooth solution and thus the procedure is well defined also in the case of order 1.

3.2 A couple of lemmas on flows

Lemma 3.3. (i) Let X ∈ A1 be symmetric w.r.t. the scalar product of H0. Then X has
a unique self-adjoint extension and e−iτX ∈ L(Hr) ∀r ≥ 0 and ∀τ ∈ R. Furthermore
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e−iτX is an isometry inH0.
(ii) Assume that X(t) is a family of symmetric operators in A1 s.t.

sup
t∈R

℘1
j(X(t)) <∞ , ∀j ≥ 1 . (3.13)

Then there exist cr, Cr > 0 s.t.

cr‖ψ‖r ≤ ‖e−iτX(t)ψ‖r ≤ Cr‖ψ‖r , ∀t ∈ R , ∀τ ∈ [0, 1] . (3.14)

Proof. (i) From the properties of the algebra A we have that XK−1
0 and [X,K0]K−1

0 are
of order 0. Thus by definition these operators belong to L(Hr) ∀r ∈ R. Then the result
follows from Theorem 1.2 of [MR17].
(ii) By item (i), for any t ∈ R and τ ∈ [0, 1] the operator e−iτX(t) is an isometry in H0,
therefore

‖e−iτX(t)ψ‖r = ‖eiτX(t) Kr
0 e−iτX(t)ψ‖0 .

Then we have

eiτX(t) Kr
0 e−iτX(t)ψ = Kr

0ψ + i

∫ τ

0

eiτ1X(t) [X(t), Kr
0 ] e−iτ1X(t)ψ dτ1

= Kr
0ψ + i

∫ τ

0

eiτ1X(t) [X(t), Kr
0 ]K−r0 Kr

0 e−iτ1X(t)ψ dτ1 (3.15)

By the properties of the algebra A and (3.13) one has that (using (2.1)–(2.3))

sup
t∈R
‖[X(t), Kr

0 ]K−r0 ‖L(H0) < Cr < +∞ ,

therefore taking the norm ‖ · ‖0 of (3.15) one gets the inequality

‖e−iτX(t)ψ‖r ≤ ‖ψ‖r +

∫ τ

0

Cr‖e−iτ1X(t)ψ‖r dτ1 .

Then by Gronwall we conclude that

‖e−iτX(t)ψ‖r ≤ eCr‖ψ‖r , ∀t ∈ R, ∀τ ∈ [−1, 1] .

This proves the majoration in (3.14). The minoration follows simply by the identity ψ =

eiτX(t)e−iτX(t)ψ and the majoration.

Proof of Lemma 3.2. Selfadjointness was proven in the previous lemma. Let us apply to
the l.h.s. of (3.5) the Taylor formula at τ = 0. Then we get, with UX(τ) := e−iτX and
adX(A) := i[X,A]

UX(−τ)AUX(τ) (3.16)

=
M∑
j=0

τ j

j!
adjX(A) +

τM+1

M !

∫ 1

0

(1− s)M+1UX(−sτ) adM+1
X (A)UX(sτ) ds .
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Using Assumption I (iv), we have adjX(A) ∈ Am−j(1−ρ). We define the remainderRM(τ,X,A)

to be the integral term in (3.16), which, using also Lemma 3.3, belongs toL(Hs,Hs−m+(M+1)(1−ρ)),
∀s ∈ R. Therefore the remainder RM(τ,X,A) is N -smoothing provided M + 1 ≥ N+m

1−ρ .
As M can be taken arbitrary large, eiτXAe−iτX fulfills Assumption I (v), thus it belongs
to Am.

3.3 Solution of the Homological equations

The first homological equation. As we have seen in Section 3.1, to prove Theorem 2.5
we need to study an homological equation of the form

i[H0, X] = A− 〈A〉 , (3.17)

where A ∈ Am and 〈A〉 is the average of A along the periodic flow of K0:

〈A〉 :=
1

2π

∫ 2π

0

A(τ) dτ , A(τ) = eiτK0 A e−iτK0 . (3.18)

Notice that the assumption on the spectrum ofK0 (see Assumption A) entails that e2iπK0 =

e2iπλ, thus for anyA ∈ A one has e2iπK0 A e−2iπK0 = A, namely τ 7→ A(τ) is 2π periodic.

Lemma 3.4. Let A ∈ Am, m ∈ R. Then 〈A〉 ∈ Am and

[K0, 〈A〉] = 0 . (3.19)

Proof. 〈A〉 ∈ Am is a consequence of Assumption II. Identity (3.19) follows by a direct
computation.

Lemma 3.5. (i) Let A ∈ Am, m ∈ R. Then

Y =
1

2π

∫ 2π

0

τ (A− 〈A〉)(τ) dτ (3.20)

solves the homological equation

i[K0, Y ] = A− 〈A〉 . (3.21)

Further Y ∈ Am and if A is symmetric, so is Y .
(ii) Choose R > 0 such that f ′(x) ≥ 1 if x ≥ R and η ∈ C∞(R) such that η(x) = 1 if
x ∈ [0, R], η(x) = 0 if x ≥ R + 1. Define

X0 := (1− η(K0)) (f ′(K0))
−1

Y , (3.22)

with Y as in (3.20). Then X0 ∈ Am−µ+1 and X := 1
2
(X0 +X∗0 ) ∈ Am−µ+1 is symmetric,

solves (3.17) modulo an error term in Am−1 provided A is symmetric. More precisely

i[H0, X] = A− 〈A〉+Am−1 . (3.23)
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We note for the sequel that if A ∈ Am then X ∈ Am−(µ−1), namely we have a gain of
µ− 1 > 0 in the smoothing order.

Proof. Assertion (i) is proved by integration by parts using that A(τ) is 2π-periodic.
To prove (ii), first remark that by Assumption B and Lemma A.1, f ′ ∈ Sµ−1

+ , thus it
is different from zero provided x ≥ R is large enough. It follows that the function

x 7→ 1− η(x)

f ′(x)
∈ S−µ+1. Therefore, by Lemma A.2, the operator (1− η(K0)) (f ′(K0))−1 ∈

A−µ+1. Finally since Y ∈ Am, it follows that X0, X ∈ Am−µ+1.
We show now that X0 solves (3.23). This is a consequence of the commutator expansion
Lemma. Indeed fix N ≥ 2, then by Lemma A.3 one has

[H0, X0] = [f(K0), X0] = f ′(K0)[K0, X0]

+
∑

2≤j≤N

1

j!
f (j)(K0)adjK0

(X0) +RN+1(f,X0)

with RN+1(f,X0) ∈ Am−µ+1+[µ]−N ⊂ Am−1.
By Lemma A.1 and Assumption I, for any integer j ≥ 2 one has that f (j)(K0) adjK0

(X) ∈
Am−µ+1+µ−j ⊂ Am−1. Then we get

i[H0, X0] = if ′(K0)[K0, X0] + Am−1

(3.22)
= (1− η(K0)) i[K0, Y ] + Am−1

(3.21)
= (1− η(K0)) (A− 〈A〉) + Am−1 ,

with Am−1 ∈ Am−1. Now put R := −η(K0) (A− 〈A〉). Since x 7→ η(x) ∈ S−∞, R
is a smoothing operator and thus Am−1 + R ∈ Am−1. Now using that by construction
X = X0 +Am−µ we easily see that X satisfies (3.23).

The second homological equation. We want to solve eq. (3.12). Using the quasiperi-
odicity assumption V (t) = W (ωt), we look for a quasiperiodic solution X1(t) = X(ωt)

of the equation
ω · ∂θX(ωt) + i[H0, X(ωt)] = W (ωt)− 〈W 〉 . (3.24)

In order to define precisely 〈W 〉, consider again the vectors vj and the frequencies ν̃j of
Lemma 2.16. First remark that, since ν =

∑d̃
j=1 ν̃jvj , one has ν ·K =

∑d̃
j=1(K · vj)ν̃j ,

so that, defining
K̃j := K · vj , K̃ := (K̃1, ..., K̃d̃) , (3.25)

one has
H0 ≡ ν ·K = ν̃ · K̃ ,

and furthermore, since vj has integer entries, then the joint spectrum of K̃ ≡ (K̃1, ..., K̃d̃)

is s.t. spec(K̃) ⊂ Zd̃ + λ̃, therefore for each operator B the map Rd̃ 3 τ 7→ B](τ) :=
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eiτ ·K̃Be−iτ ·K̃ is periodic in each of the τj’s. For A ∈ C∞(Tn,Am), denote A](θ, τ) :=

eiτ ·K̃A(θ)e−iτ ·K̃ .

By Assumption II′, A] ∈ C∞(Tn+d̃,Am). Define now

〈A〉 :=
1

(2π)n+d̃

∫
Tn+d̃

A](θ, τ)dτdθ . (3.26)

Remark 3.6. Let A ∈ C∞(Tn,Am), m ∈ R. Then by Assumption II ′, 〈A〉 ∈ Am is
independent of the angles and

[K̃j, 〈A〉] = 0 , 1 ≤ j ≤ d̃ ; [K0, 〈A〉] = 0 . (3.27)

Lemma 3.7. Let A ∈ C∞b (Tn,Am), m ∈ R. Provided (2.16) holds, the homological
equation (3.24) has a solution X ∈ C∞(Tn,Am). Furthermore if A is symmetric then X
is symmetric as well.

Proof. Since A] is defined on Tn+d̃, we can expand it in Fourier series:

A](θ, τ) =
∑

(k,`)∈Zn+d̃

Â]k,` ei(k·θ+`·τ) ,

where

Â]k,` :=
1

(2π)n+d̃

∫
Tn+d̃

A](θ, τ)e−i(k·θ+`·τ) dθdτ.

Notice that

A(θ) ≡ A](θ, 0) =
∑

(k,`)∈Zn+d̃

Â]k,`e
ik·θ. (3.28)

〈A〉 = Â]0,0 (3.29)

Then, instead of solving directly the homological equation (3.24), we solve

ω ·∂θX](θ, τ)+i[H0, X
](θ, τ)] = (W − 〈W 〉)] (θ, τ) , ∀θ ∈ Tn , ∀τ ∈ Td̃ . (3.30)

Clearly if we find a smooth solution X](θ, τ) of this equation, then X(θ) := X](θ, 0)

solves the original homological equation (3.24). Now remark that, using

X](θ, τ + τ ′) = eiτK̃X](θ, τ ′)e−iτK̃
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we have

i[H0, X
](θ, τ)] =

d̃∑
j=1

ν̃ji[K̃j, X
](θ, τ)] =

d̃∑
j=1

ν̃j
d

dε

∣∣∣∣
ε=0

eiεK̃j X](θ, τ)e−iεK̃j

=
d̃∑
j=1

ν̃j
d

dε

∣∣∣∣
ε=0

X](θ, τ + εej)

=
∑

(k,`)∈Zn+d̃

X̂]
k,`

d

dε

∣∣∣∣
ε=0

d̃∑
j=1

ν̃j ei(k·θ+`·(τ+εej))

=
∑

(k,`)∈Zn+d̃

iν̃ · ` X̂]
k,`e

i(k·θ+`·τ) .

Therefore, expanding in Fourier series, equation (3.30) is equivalent to

i(ω · k + ν̃ · `)X̂]
k,` = Ŵ ]

k,` , (k, `) 6= 0

Hence define

X̂]
k,` = −i

Ŵ ]
k,`

(ω · k + ν̃ · `)
, if (k, `) 6= 0. (3.31)

Since W ] is in C∞(Tn+d̃,Am) we get that for any j,N ≥ 1 there exists CN,j such that

℘mj

(
Ŵ ]
k,`

)
≤ CN,j(|k|+ |`|)−N .

So we get easily that if X is defined by X(θ) = X](θ, 0) and X] has Fourier coefficients
(3.31) with X]

k,0 = 0, then X ∈ C∞b (Tn,Am).

3.4 The iterative Lemma

We state and prove the iterative Lemma which is the main step for the proof of our main
results.

Theorem 3.8. Assume that the assumptions of Theorem 2.5 or of Theorem 2.18 are satis-
fied.
There exist δ > 0 and a sequence {Xj(t)}j≥1 of self-adjoint (time-dependent) opera-
tors in H with Xj ∈ C∞b (R,Aρ−(µ−1)−(j−1)δ), such that ∀j, the inequalities (3.14) are
satisfied; for any N ≥ 1 the change of variables

ψ = e−iX1(t) . . . e−iXN (t)ϕ (3.32)

transforms H0 + V (t) into the Hamiltonian

H(N)(t) := H0 + Z(N)(t) + V (N)(t) (3.33)
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whereZ(N) ∈ C∞b (R,Aρ) commutes withK0, i.e. [Z(N), K0] = 0, while V (N) ∈ C∞b (R,Aρ−Nδ).
Furthermore, under the assumptions of Theorem 2.18, one has that Z(N) is independent
of the angles and

[Z(N); K̃j] = 0 , ∀j = 1, ..., d̃ . (3.34)

Proof. It is proved by recurrence. Consider first the assumptions of Theorem 2.5. Using
Lemmas 3.1, 3.2, 3.3, 3.5, one gets the theorem for N = 1 with Z(1)(t) := 〈V (t)〉 ∈
C∞b (R,Aρ). By Lemma 3.4, [Z(1)(t), K0] = 0. In this case δ can be taken as in (3.9).
The iterative step N → N + 1 is proved following the same lines, just adding the remark
that eiXN+1Z(N)e−iXN+1 − Z(N) ∈ Aρ−(µ−1)−Nδ+ρ−1 ⊂ Aρ−(N+1)δ.

Under the assumptions of Theorem 2.18, the result is proved along the same lines,
with δ as in (3.11). The property (3.34) follows by Remark 3.6.

3.5 Proof of Theorem 2.5

By Theorem 3.8, the operator H(t) is conjugated to H(N)(t). So we apply Theorem 1.5
of [MR17] to the Schrödinger equation for H(N)(t). More precisely we have

[H(N)(t), K0] = [V (N)(t), K0] ∈ C0
b (R,Aρ−Nδ)

and thus, by choosing N large enough, (3.2) ensures the result for the propagator UN(t, s)

of H(N)(t).
Now since H(t) is conjugated to H(N)(t), H(t) generates a propagator U(t, s) in the

Hilbert space scale Hr unitarily equivalent to the propagator UN(t, s). Therefore, using
also (3.14), the propagator U(t, s) fulfills (2.9), thus yielding the result.

4 Applications

In this section we prove Corollary 2.7, Corollary 2.11 and Corollary 2.21.

4.1 Zoll manifolds

To begin with we show how to put ourselves in the abstract setup. So first we define the
operator K0. This will be achieved by exploiting the spectral properties of the operator
4g. Applying Theorem 1 of Colin de Verdière [CdV79], there exists a pseudodifferential
operator Q of order −1, commuting with 4g, such that Spec[

√
4g + Q] ⊆ N + λ with

some λ ≥ 0. We can assume λ > 0. If not, denoting Π− the projector on the non positive
eigenvalues, we replace Q by Q + CΠ− with C > 0 large enough; remark that Π−

commutes with4g and is a smoothing operator. So we define

K0 :=
√
4g +Q , H0 := K2

0 . (4.1)
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Now remark that H0 = 4g + 2Q
√
4g +Q2, so we have

H0 = 4g +Q0

where Q0 is a pseudo-differential operator of order 0 and therefore

H(t) = 4g + V (t) ≡ H0 + Ṽ (t) , Ṽ (t) := V (t)−Q0

and we are in the setup of the abstract Schrödinger equation (1.1) with the new perturba-
tion Ṽ (t).

Remark that Hr := Dom((K0)r), r ≥ 0, coincides with the classical Sobolev space
Hr(M) and one has the equivalence of norms

cr ‖ψ‖Hr(M) ≤ ‖ψ‖r ≤ Cr ‖ψ‖Hr(M) , ∀r ∈ R .

We define the classAm to be the class of pseudodifferential operators whose (real valued)
symbols belong to Smcl (M). Clearly K0 ∈ A1 (recall that Π− is a smoothing operator). It
is classical that Assumptions I and II are fulfilled (see e.g. [Hör85] and appendix B).

Remark 4.1. We have implicitly used here that on a compact manifold any smoothing
operator has a symbol in the class S−∞cl (M). This is true because on a compact manifold
any operator is properly supported [Hör85]. In particular Assumption I (v) is satisfied
for Am = Op(Smcl (M)). Let us remark that this property is wrong for classical pseudo-
differential operators on M = Rd.
Hence the topology on Am is the topology defined on Smcl (M).
Moreover the uniform boundness in Assumption II is checked using the periodicity of the
classical flow.

Proof of Corollary 2.7. Assumption A holds true by construction of K0, Assumption B
holds with f(x) = x2 and therefore µ := 2. Since V (t) is a pseudodifferential opera-
tor of order ρ < 2 whose symbol belongs to C∞b (R, Sρcl(M)), one verifies easily, using
pseudodifferential calculus (in particular estimates (2.1)–(2.3)), that Ṽ (t) = V (t)−Q0 ∈
C∞b (R,Aρ). Hence the corollary follows from Theorem 2.5.

4.2 Anharmonic oscillators

We recall that for a symbol a (in the sense of Definition 2.8) we denote by a(x,Dx) its
Weyl quantization(

a(x,Dx)ψ
)

(x) :=
1

2π

∫∫
y,ξ∈R

ei(x−y)ξ a

(
x+ y

2
, ξ

)
ψ(y) dydξ . (4.2)

We endow Sρan (defined in Definition 2.8) with the family of seminorms

℘ρj (a) :=
∑

|α|+|β|≤j

sup
(x,ξ)∈R2

∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣

[k0(x, ξ)]ρ−
kβ+lα
k+l

, j ∈ N . (4.3)
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Remark 4.2. As we have seen on a compact manifold (see Remark 4.1) we can use semi-
norms on symbols in Sman on the corresponding operators classes modulo smoothing op-
erators. The reason here is that smoothing operators are operators A ∈ L(S ′(R),S(R)),
where S ′(R) is the Schwartz space of temperate distributions on R. It is well known that
equivalently the Schwartz kernel KA of A is in S(R×R) so its Weyl symbol σwA is also in
S(R× R). These facts result from the two formulas: KA(x, y) = 〈Aδy, δx〉 and

σwA(x, ξ) =

∫
R

e−iuξKA(x+
u

2
, x− u

2
)du.

Then we can easily check that Assumption I (v) is satisfied for Am = Opw(Sman).

The operator K0 is defined using the spectral properties of the Hamiltonian Hk,l de-
fined in (2.11) that were studied in detail in [HR82b]; in that paper an accurate Bohr-
Sommerfeld rule for the the eigenvalues of Hk,l was obtained and the existence of a pseu-
dodifferential operator Q of order -1 4 Therefore we define

K0 := H
k+l
2kl
k,l +Q , H0 := K

2kl
k+l

0 .

We define Am to be the class of pseudodifferential operator with symbols in Sman. Notice
that by construction Am ⊂ L(Hs,Hs−m) for all s ∈ R. It is classical that A fulfills
Assumptions I and II (see [HR82b, HR82a]).
On the other hand Assumptions A and B are fulfilled with µ := 2kl

k+l
> 1 (as k + l ≥ 3).

Furthermore one has
Hk,` = (K0 −Q)

2kl
k+l = K

2kl
k+l

0 +Q0

where Q0 is a pseudodifferential operator of order 2kl
k+l
− 2. Therefore

H(t) = Hk,l + V (t) ≡ H0 + Ṽ (t) , Ṽ (t) := V (t) +Q0

and once again we are in the setup of the abstract Schrödinger equation (1.1) with the new
perturbation Ṽ (t).

Proof of Corollary 2.11. Since V (t) is a pseudodifferential operator of order ρ < 2kl
k+l

whose symbol and its time-derivatives have uniformly (in time) bounded seminorms, one
verifies that Ṽ (t) = V (t)+Q0 ∈ C∞b (R,Aρ). Hence the corollary follows from Theorem
2.5.

4 Actually [HR82b] proves that Q has a symbol which is quasi-homogeneous of degree −k − l. Here a
symbol f(x, ξ) is quasi-homogeneous of degree m if

f(λlx, λkξ) = λmf(x, ξ) , ∀λ > 0 , ∀(x, ξ) ∈ R2 \ {0} .

It is classical [HR82b, HR82a] that if f is quasi-homogeneous of degree m, then it is a symbol in the class

S
m/(k+l)
an . −1 such that Spec[H

k+l
2kl

k,l + Q] ⊆ N + λ (λ ≥ 0) was proven. Note that for our numerology

H
k+l
2kl

k,l is of order 1 by definition.
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4.3 Relativistic Schrödinger equation on Zoll manifolds

The proof of Corollary 2.21 is along the lines developed in Subsection 4.1. Let us remark
that the operator

√
4g + µ −

√
4g is of order −1. Hence, defining K0 as in (4.1), one

has again
√
4g + µ = K0 +Q0 with Q0 of order −1. Therefore

H(t) =
√
4g + µ+ V (ωt, x,Dx) = K0 + Ṽ (ωt)

with the new perturbation Ṽ (ωt) ∈ C∞(Tn,Aρ).

This time we verify Assumptions II′, A′ and B′ with d = 1 and K1 = K0 = H0.
Concerning the nonresonance condition just remark that in this case we have that ν has
only one component given by 1.

Thus Theorem 2.18 immediately yields Corollary 2.21.

A Technical lemmas on classical symbols

We begin with the following lemma whose proof is completely standard (and we skip it)

Lemma A.1. (i) If f ∈ Sa, g ∈ Sb then fg ∈ Sa+b.

(ii) If f ∈ Sa, then f (j) ∈ Sa−j .

(iii) If x 7→ η(x) is a smooth cut-off function on R, then η ∈ S−∞.

(iv) The function f(x) = xa, a > 0, is a classical elliptic symbol in Sa+.

Lemma A.2. If g ∈ Sµ, µ ∈ R, then g(K0) ∈ Aµ.

Proof. By definition g(x) =
∑

0≤j≤N−1 cjx
µ−j + R(x), |R(x)| ≤ CN |xµ−N | for |x| ≥

1. Then g(K0) =
∑

0≤j≤N−1 cjK
µ−j
0 + R(K0), where R(K0) is defined by functional

calculus as R(K0) :=
∫∞

0
R(λ)dEK0(λ), dEK0(λ) being the spectral resolution of K0.

By Assumption I,
∑

0≤j≤N−1 cjK
µ−j
0 ∈ Aµ while the operator R(K0) is N -smoothing

(in the sense of Definition 2.1). Since N can be taken arbitrarily large, g(K0) fulfills
Assumption I (v), therefore it belongs toAµ. The other properties are easily verified using
such decomposition.

Finally, we recall a commutator expansion lemma following from [DG97, Lemma
C.3.1]:

Lemma A.3. Let f ∈ Sρ+ and W ∈ Am. Then for all N ≥ [ρ] we have

[f(K0),W ] =
∑

1≤j≤N

1

j!
f (j)(K0)adjK0

W +RN+1(f,K0,W ),
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where RN+1(f,K0,W ) ∈ A[ρ]+m−N .
Moreover if W depends on time t with uniform estimates in Am then it is also true for
RN+1(f,K0,W ).

Proof. Apply [DG97, Lemma C.3.1] to the bounded operator B = K−m0 W .

B An abstract proof of Egorov Theorem

In order to check Assumption II, we introduce the following weaker condition

Assumption II-CL: For every m ∈ R and every A ∈ Am there exist Φ(t)(A) ∈
C1(Rt,Am) and R(A, t) ∈ C0(Rt,Am−1) such that Φ(0)(A) = A and

d

dt
Φ(t)(A) = i−1[Φ(t)(A), K0] +R(A, t) (B.1)

In applications in a pseudodifferential operator setting, we have A = Op(a), a is the
symbol of A and one can choose Φ(t)(A) = Op(a ◦ φt) where φt is the classical flow of
the symbol of K0. Then one has to verify that a ◦ φt belongs to the same symbol class as
a using the periodicity of φt (see for example [Tay91]).

Theorem B.1 (Abstract Egorov Theorem). If Assumption I and Assumption II-CL are
satisfied then for any A ∈ Am, the map defined on R:
τ 7→ A(τ) := eiτK0 A e−iτK0 ∈ C0(R,Am).
In particular if τ 7→ A(τ) is periodic on R then A(·) ∈ C0

b (R,Am) and Assumption II
holds true.

Remark B.2. Notice that if the spectrum of K0 is discrete with eigenvalues {λj}j≥0 such
that λj − λk ∈ Z for all j, k ∈ N then τ 7→ A(τ) is periodic on R.

Proof. We follow [Rob87] (p. 202-207). Let U(t) = e−itK0 . Compute

d

dτ

(
U(τ − t)Φ(τ)(A)U(t− τ)

)
= U(τ − t)

(
i[Φ(τ)(A), K0] +

d

dτ
Φ(τ)(A)

)
︸ ︷︷ ︸

R(A,τ)

U(t− τ).

So using (B.1) and integrate in τ between 0 and t we get

U(−t)AU(t) = Φ(t)(A)−
∫ t

0

U(τ − t)R(A, τ)U(t− τ)dτ. (B.2)

Now we iterate from this formula. In the following step we apply this formula for ev-
ery τ to Anew = R(A, τ). In particular Assumption II-CL implies that d

dt
Φ(t)(Anew) =

i−1[Φ(t)(Anew), K0] +R(Anew, t), so we get
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U(−t)AU(t) = A0(t) + A1(t)

+

∫ t

0

∫ t−τ

0

U(τ − τ1 − t)R(R(A, τ), τ1)U(t− τ − τ1)dτdτ1.

where A0(t) = Φ(t)(A), A1(t) =
∫ t

0
Φ(t−τ)(R(A, τ))dτ ∈ Am−1 and

R(R(A, τ), τ − τ1) ∈ Am−2.
At the step N we get easily by induction:

U(−t)AU(t) = A0(t) + A1(t) + · · ·+ AN(t)

+

∫ t

0

∫ t−τ0

0

· · ·
∫ t−τ0−···−τN

0

dτ0dτ1 · · · dτN

U(τ0 + τ1 + · · ·+ τN − t)R(N)(A, τ0, τ1, · · · , τN)U(t− τ0 − τ1 − · · · − τN),

where Aj ∈ C0(R,Am−j) and R(N)(A, τ1, · · · , τN) ∈ C0(RN+1,Am−N−1).
Now we remark that the remainder term is as smoothing as we want by taking N large
enough, so the algebra being stable by smoothing perturbations we get the A(·) ∈ Am.

C Proof of Lemma 2.16

We reproduce here the proof given in the lecture notes by Giorgilli [Gio] (in particular the
technical results are contained in Appendix A). A general presentation containing also the
results that we use here can be found in [Sie89].

We start by stating without proof a simple Lemma.

Lemma C.1. Let e1, ..., ed and e′1, ..., e
′
d be two basis of Zd; then the matrix M = (Mij)

s.t. e′i =
∑

jMijej is unimodular with integer entries.

Then one has the following corollary.

Corollary C.2. A collection of vectors ej ∈ Zd, j = 1, ..., d, is a basis of Zd if and only if
the determinant of the matrix having ej as rows is 1.

The corollary immediately follows from Lemma C.1 and the remark that such a prop-
erty holds for the canonical basis of Zd.

Define now the resonance modulusMν of ν by

Mν :=
{
k ∈ Zd : ν · k = 0

}
.

This is a discrete subgroup of Rd which satisfies

span(Mν) ∩ Zd =Mν . (C.1)
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Let 0 ≤ r ≤ d − 1 be the dimension ofMν . It is well known that any discrete subgroup
of Rd admits a basis. Let e1, ..., er, be a basis ofMν , and remark that the vectors ej have
integer components. Then the following result holds5.

Lemma C.3. There exist d̃ := d − r vectors u1, ...,ud̃ with integer entries, such that
e1, ..., er,u1, ...,ud̃ form a basis of Zd.

Then one obtains immediately the following

Corollary C.4. Let M be the matrix with rows given by the vectors ej and the vectors
uj; define ν̌ := Mν, then one has ν̌i = 0, ∀i = 1, ..., r, while ν̃i := ν̌r+i, i = 1, ..., d̃ are
independent over the rationals.

Proof of Lemma 2.16. Consider the matrix M−1: since M is unimodular with integer
entries, the same is true for M−1, and one has ν = M−1ν̌; however, since the first r
components of ν̌ vanish, such an expression reduces to a linear combination of vectors
with integer entries, the coefficients of the combination being ν̃1, ..., ν̃d̃.
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http://dx.doi.org/10.1016/j.jfa.2017.02.029
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