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Abstract

We prove an abstract theorem giving a (¢)€ bound (Ve > 0) on the growth of the
Sobolev norms in linear Schrodinger equations of the form i@[} = Ho+V (t)y when
the time ¢ — oo. The abstract theorem is applied to several cases, including the cases
where (i) H is the Laplace operator on a Zoll manifold and V'(¢) a pseudodifferential
operator of order smaller than 2; (ii) Hy is the (resonant or nonresonant) Harmonic
oscillator in R? and V/(t) a pseudodifferential operator of order smaller than Hy
depending in a quasiperiodic way on time. The proof is obtained by first conjugating
the system to some normal form in which the perturbation is a smoothing operator
and then applying the results of [MR17].

Keywords. linear Schrodinger operators, time dependent Hamiltonians, growth in
time of Sobolev norms.

1 Introduction

In this paper we study growth of Sobolev norms for solutions of the abstract linear
Schrodinger equation
10 = Hop + V(t)1) (1.1)

in a scale of Hilbert spaces H"; here V() is a time dependent operator and H a time
independent linear operator. We will prove some abstract results ensuring that for any
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r > 0 and any € > 0, the H" norm of the solution grows in time at most as (t)¢ as t — oo,
where (t) := /1 + t2. The main novelty of our results is that they allow (1) to weaken
the standard gap assumptions on the spectrum of Hy, in particular to deal with some cases
where the gaps are dense in R, and (2) to deal with perturbations which are of any order
strictly smaller than that of H (see below for a precise definition).

The main applications are to the case where

(i) H, is either the Laplace operator on a Zoll manifold (e.g. the spheres) or an an-
harmonic oscillator in R, while V' is an operator depending arbitrarily on time and
having order strictly smaller than H;

(ii) H is the (possibly nonresonant) multidimensional Harmonic oscillator and V' (¢) is
an operator which depends on time in a quasiperiodic way and has order strictly
smaller than Hj.

Further applications will be presented in the paper.

We emphasize in particular the results (ii) which, as far as we know are the first control-
ling growth of Sobolev norms in higher dimensional systems without any gap condition.

The proof is based on the combination of the ideas of [Bam18, [Bam17, BGMR18]
(which in turn are a developments of the ideas of [BBM14], see also [PTO1, IPT035]) and
the results of [MR17]; precisely, for any positive /N, we construct a (finite) sequence of
unitary time dependent transformations conjugating Hy + V'(¢) to a Hamiltonian of the
form

Hy+ ZM(t) + VW (1) (1.2)

where [Hy; Z™)] = 0 and VW) is a smoothing operator of order N, namely an operator
belonging to L(H?; H*Y) for any s (linear bounded operators from H* to H*™). Then
we apply Theorem 1.5 of [MR17] to getting the (¢)€ bound on the growth of Sobolev
norms.

We think that a further point of interest of our paper is that the conjugation to a system
of the form (1.2) is here developed in an abstract context, instead then in the framework
of classes of pseudodifferential operators adapted to the situation under study; this is the
main reason why we get an abstract theory directly applicable to many different contexts.

The main point is that we introduce an abstract graded algebra of operators whose
properties mimic the properties of pseudodifferential operators. The use of this framework
is made possible by the technique we develop to solve the homological equations met
in the construction of the conjugation of H to (I.2). Indeed, we recall that in previous
papers the smoothing theorem, namely the result conjugating the original system to (1.2)
was obtained by quantizing the procedure of classical normal form. Here instead, we
work directly at the quantum level, in particular solving at this level the two homological

equations that we find (see egs. (3.17)) and (3.24) below).
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It is worth to add a few words on the way we solve the homological equations. When
dealing with systems related to the applications (i), we assume that Hy = f(Kj) where f
is a superlinear function and K is an operator s.t.

spec(Ko) CN+ X, A>0. (1.3)

In this case we solve the homological equation essentially by averaging over the flow
e~ Ko of K. In turn this is made possible by the use of a commutator expansion lemma
proved in [DG97]]. When dealing with the d dimensional harmonic oscillators instead, we
take

d
HO = ZV]KJ y
7=0

with K ; commuting linear operators, each one fulfilling the property (L.3)) (think of /; =
—83)_ + x?) and v; > 0; then we consider operators of the form

elT'K A e—lT-K

(where of course 7 - K := 1 K7 + ... + 74K ,), remark that they are quasiperiodic in the
“angles” 7, and use a Fourier expansion in 7 in order to solve the homological equation.

The study of growth of Sobolev norms and the related results on the nature of the spec-
trum of the Floquet operator has a long history: we recall the results by [How89, [How92,
Joy94]] showing that the Floquet spectrum of systems with growing gaps and bounded
perturbations is pure point, a result which implies boundedness of the expectation value
of the energy. The first (¢)° estimates on the expectation value of the energy for system
of the form was obtained by Nenciu in [Nen97] for the case of increasing gaps and
bounded perturbations (see also [BJ98, Joy96] for similar results), and by Duclos, Lev
and Stovicek [DLSO08] in case of shrinking gaps. In the case of increasing gaps, such re-
sults were improved recently by two of us (see [MR17]) who obtained the (¢)¢ growth
of Sobolev norms also in the case of unbounded perturbations depending arbitrarily on
time, for example in the case where H, = —83 + 2%, the result of [MR17] allows to
deal with perturbations growing at infinity as |x|™ with m < k — 1. In the present paper
we get the result for any m < 2k. The result of [MR17] also applies to perturbations
of the free Schrodiger equation on Zoll manifolds with perturbations of order strictly
smaller than 1. Here we deal with perturbations of order strictly smaller than 2. A study
of perturbations of maximal order has been done independently by Montalto [Monl7]
who got a control of the growth of Sobolev norms for the Schrodinger equation on T
with H = a(t, z) |—0ye|™ + V(t) with M > 1/2, a a smooth positive function and V' a
pseudodifferential operator of order smaller than M.

Finally we recall that in [MR17] logarithmic estimates for the growth of Sobolev
norms were also obtained in the case of perturbations depending analytically on time.
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Here we do not attack the problem of getting logarithmic estimates, but we think that our
technique would also allow to get such estimates.

A remarkable further result was obtained by Bourgain [Bou99a, [Bou99b] who ob-
tained a logarithmic bound on the growth of Sobolev norms for the Schrodinger equation
on T¢ (d = 1,2) in the case of an analytic perturbation depending quasiperiodically on
time. Such a result is based on the use of a Lemma on the clustering of resonant sites (in
a suitable space time lattice) which does not seem to extend to different geometries. The
result of Bourgain was extended by Wang [Wan08] to deal with Schrédinger equations on
T perturbed by a potential analytic in time (but otherwise depending arbitrary on time)
and greatly simplified by Delort [Dell0] who used it in an abstract framework which al-
lows to deal with the case of T? (any d > 1) and also with the case of Zoll manifolds,
obtaining a growth bounded by (t) (see also [FZ12] for analytic potentials on T?). We
also mention the reducibility result by [EKQ9] dealing with small quasiperiodic perturba-
tions of the free Schrodinger equation on T¢; for such a system, the authors prove that
growth of Sobolev norms cannot happen, provided the frequency of the quasiperiodic so-
lution is chosen in a nonresonant set. At present our method does not allow to deal with
the Schrodinger equation on T¢ for d > 2.

Concerning Harmonic oscillators in R? with d > 1, a couple of reducibility results
are known, namely [GP16]] in which the authors study small bounded perturbations of
the completely resonant Harmonic oscillator, and [BGMR18]] in which we studied small
polynomial perturbations of the resonant or nonresonant Harmonic oscillator.

As far as we know no results are known on growth of Sobolev norms for perturbations
of the harmonic oscillator:

d
Hy:=-A+> vlal, (1.4)
j=1

with nonresonant frequencies v;. This is due to the fact that the differences between two
of its eigenvalues {\,},.ya, Namely

AM—N=v-(a—0D)

are dense on the real axis and this prevents the use of any previous technique. As antic-
ipated above here we obtain the (¢)¢ growth for the case of perturbation of order strictly
smaller than the order of the Harmonic oscillator.

Acknowledgments. During the preparation of this work, we were supported by ANR -15-
CEA40-0001-02 “BEKAM?” of the Agence Nationale de la Recherche. A. Maspero is also
partially supported by PRIN 2015 “Variational methods, with applications to problems in
mathematical physics and geometry”.
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2 Main results

2.1 An abstract graded algebra

We start with a Hilbert space ‘H and a reference operator K, which we assume to be
selfadjoint and positive, namely such that

(W Ko) > cxc [0, Vo€ D), x>0,

and define as usual a scale of Hilbert spaces by H" = D(K{) (the domain of the op-
erator Kj) if r > 0, and H" = (H~") (the dual space) if » < 0. Finally we de-
note by H™*° = (J,.g H" and H*>* = [ . H". We endow H" with the natural norm
|01l := ||(Ko)"¢||o, where || -||o is the norm of H® = H. Notice that for any m € R, H™>°
is a dense linear subspace of H"" (this is a consequence of the spectral decomposition of
Ko).

We introduce now a graded algebra A of operators which mimic some fundamental

properties of different classes of pseudo-differential operators. For m € R let A,, be a
linear subspace of (,.x L(H®,H*™™) and define A := J,,.g Am. We notice that the
space (),cg £(H®,H*™™) is a Fréchet space equipped with the semi-norms: || Al|,,, s :=
[All 23 20-m)-

One of our aims is to control the smoothing properties of the operators in the scale
{H"},er. If A € A,, then A is more and more smoothing if m — —oo and the opposite
as m — +o0o. We will say that A is of order m if A € A,,.

Definition 2.1. We say that S € L(HT°, H™>°) is N-smoothing if Vx € R, it can be
extended to an operator in L(H", H*N). When this is true for every N > 0, we say that

S is a smoothing operator.

The first set of assumptions concerns the properties of A,,:

Assumption I:
(i) Foreachm € R, K" € A,,; in particular K, is an operator of order one.

(i) For each m € R, A,, is a Fréchet space for a family of filtering semi-norms
{7} }j>1 such that the embedding A,,, — (,cp L(H®, H>™™) is continuous.
If m" < mthen A,,, C A,, with a continuous embedding.

(iii) A is a graded algebra, i.e Vm,n € R:if A € A,, and B € A, then AB € A,,,,
and the map (A, B) — AB is continuous from A,, X A, into A, .
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(iv) Ais a graded Lie-algebrd|: if A € A,, and B € A, then the commutator [A, B] €
Anin_1 and the map (A, B) — [A, B] is continuous from A,, x A, into A, 1, 1.

(v) Ais closed under perturbation by smoothing operators in the following sense: let A
be a linear map: H1T> — H~°°. If there exists m € R such that for every N > 0 we
have a decomposition A = AN+ SN with AN) € A,, and SV) is N-smoothing,
then A € A,,.

(vi) If A € A,, then also the adjoint operator A* € A,,. The duality here is defined by
the scalar product (-, -) of H = H°. The adjoint A* is defined by (u, Av) = (A*u,v)
for u,v € ‘H> and extended by continuity.

It is well known that classes of pseudo-differential operators satisfy these properties,
provided one chooses for K a suitable operator of the right order (see e.g. [HOr85]).
In [Gui83]] V. Guillemin has introduced abstract pseudo-differential algebras, called gen-
eralized Weyl algebras. For his purpose [[Gui85] needs different properties than ours, but
obviously there is an overlap with our presentation.

Remark 2.2. One has that VA € A,,, VB € A,

Vm,s 3N s.t. ||Al|ms < CrLoR(A), (2.1)
Ym,n,j 3N s.t. of"""(AB) < Cy o (A) pi(B) , (2.2)
Vm,n,j 3N st o (A, B]) < C3oi(A) i (B) (2.3)

for some positive constants C (s, m), Co(m,n, j), Cs(m,n, j).

For 0 C R? and F a Fréchet space, we will denote by Ci"(€2, F) the space of C™
maps f : Q2 >z — f(x) € F, such that, for every seminorm || - ||; of F one has

sup [|02f(z)|l; < +o0, VYaeN? : |a| <m. (2.4)
€S

If (2.4)) is true Vm, we say f € C;°(§2, F).
The next property needed is the following Egorov property, also well known for pseudo-
differential operators.

Assumption II: For any A € A,, , the map defined on R:
T A(T) := B0 Ae7iTE0 € CY(R, A,,).

Remark 2.3. From Assumption Il one has that, for any B € A,, for any { € N,
ady ) (B) € CY(] = T. T, Api(m-1y0), VT > 0. Here ad4(B) = i[A, B].

3This property will impose the choice of the semi-norms {p;” }i>1. We will see in the examples that the
natural choice (|| - ||,s)s>0 has to be refined.
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Remark that Assumption II is a quantum property for the time evolution of observ-
ables. Practically it follows from the time evolution of classical observables (Hamilton
equation) if some classes of symbols are preserved under the classical flows. Indeed one
might replace Assumption II by a weaker one (see Appendix [B).

2.2 Perturbations of systems of order larger than 1

Now we state our spectral assumption on K:

Assumption A : K has an entire discrete spectrum such that
spec(Ko) C N+ A (2.5)

for some A > 0.

Our second spectral assumption is essentially that the unperturbed operator Hj is a
function of K. To state it precisely we need the following definition

Definition 2.4. A function f € C*(R) will be said to be a classical symbol of order p (at
+00) if there exist real numbers {c;};>o s.t. c¢ > 0 and for all k > 1, all N > 1, there
exists Cj, y S.1.
dr ,
|—(f(z) — Z ez’ )| < Crn|z?™ 7, Vo > 1.

dxk A
0<j<N-1

We will denote by S? the space of classical symbols of order p.

We shall say that [ is an elliptic classical symbol of order p if f is real and cy > 0. We
shall write | € S¥.

We shall say that f is a classical symbol of order —oo if f € S™ Vm < 0. We shall write
fes.

Some standard properties of classical symbols are recalled in Appendix [A] We assume
that

Assumption B: There exists an elliptic classical symbol f of order pz > 1, such that

Hy = f(Ky) . (2.6)

We will prove (see Lemma [A.2)) that (2.6) implies H, € A,, i.e. H is an operator of
order > 1.



8 Dario Bambusi, Benoit Grébert, Alberto Maspero, Didier Robert

We come back to the Schrodinger equation defined by the time dependent Hamiltonian
H(t) := Ho+ V(t) (see (I.I)). When the solution () exists globally in time, we define
the Schrodinger propagator U (¢, s), generated by (1.1)), such that

b(t) =U(t,s)y, U(s,s) =1 2.7)
We are ready to state our main result on systems with increasing gaps:

Theorem 2.5. Assume that A is a graded algebra as defined in Section 2.1 and that K,
Hy satisfy assumptions A and B. Furthermore assume that the perturbation V (t) with

domain H™> is symmetric for every t € R and satisfies
Vel R, A,), with p < i . (2.8)

Then H(t) = Hy + V (t) generates a propagator U(t, s) s.t. U(t,s) € L(H") Vr € R.
Moreover for any r > 0 and any € > 0 there exists C,. . > 0 such that

||U(t, SWHT < Cr,e (t - S>E ||¢||7“7 Vt,s € R. (2.9)

This result extends a result by Nenciu [Nen97/] for bounded perturbations (p = 0).
Furthermore in [MR17] two of us had already extended Nenciu’s result to unbounded
perturbations with the constraint p < min(y — 1, 1). The main point is that we add here a
stronger spectral assumption: essentially the spectrum of Hy is f(N+ \) for some smooth
function f (see Assumptions A and B).

As a final remark, we note that Theorem [2.5] gives also a proof of the existence and
of some properties of the propagator U/ (¢, s), which in the framework of Theorem [2.5|are
not obvious.

2.3 Applications (i)

Zoll manifolds. Recall that a Zoll manifold is a compact Riemannian manifold (M, g)
such that all the geodesic curves have the same period 7' := 2. For example the d-
dimensional sphere S¢ is a Zoll manifold. We denote by A, the positive Laplace-Beltrami
operator on M and by H"(M) = Dom(1 + Ag)r/z, r > 0, the usual scale of Sobolev
spaces. Finally we denote by S (M) the space of classical real valued symbols of order
m € R on the cotangent 7 (M) of M (see Hormander [Hor85] for more details).

Definition 2.6. We say that A € A,, if it is a pseudodifferential operator (in the sense of
Hormander [Hor85|]) with symbol of class SI'(M).

In this case the operator K| is a perturbation of order —1 of //\, (see Sect. , and
the norms ||¢||,. coincide with the standard Sobolev norms.

Corollary 2.7 (Zoll manifolds). Let V (t) be a symmetric pseudo-differential operator of
order p < 2 on M such that its symbol v € C;°(R; S¥(M)). Then the propagator U(t, s)
generated by H(t) = A, + V (t) exists and satisfies (2.9).
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Anharmonic oscillators on R. The second application concerns one dimensional quan-
tum anharmonic oscillators

o) = Hgp + V() , r€eR, (2.10)
where H,; is the one degree of freedom Hamiltonian
Hyy = D* + az® | kEleN, k+1>3, a>0. (2.11)

Here D, := i7'd,. Itis well known that Hj, , is essentially self-adjoint in L?(R) [HR82b].

k+l
Define the Sobolev spaces H" := Dom(H’}’ ") for r > 0. We define now suitable operator
classes for the perturbation. Denote

k+l

2kl

ko(,€) := (1 + 2% + &%)

Definition 2.8. A function f will be called a symbol of order p € Rif f € C*(R, x R¢)
andVa, € N, there exists C, g > 0 s.t.

kB+la

10207 f(2,8)] < Cap ko(w, &)™ . (2.12)

We will write f € S?..

As usual to a symbol f € S? we associate the operator f(x, D,) which is obtained
by standard Weyl quantization (see formula (4.2)) below).

Definition 2.9. We say that I' € A, if it is a pseudodifferential operator with symbol of
class S? , i.e., if there exist f € S? and S smoothing (in the sense of Definition such

an’

that F = f(x,D,) + S.

In this case the seminorms are defined by

G(F):= > Cag,
lal+]8|<j
with C,z the smallest constants s.t. eq. (2.12) holds. If a symbol f depends on additional
parameters (e.g. it is time dependent), we ask that the constants C, 3 are uniform w.r.t.
such parameters.

1 b
Remark 2.10. With this definition of symbols, one has x € Sa', € € Sai', 228 + €% ¢

2kl

Sﬁ, ko(l’,g) € S;n'
We get the following:

Corollary 2.11 (1-D anharmonic oscillators). Consider equation (2.10) with the assump-

tion ZT1). Assume also that V- € C;*(R; A,) with p < 25 Then the propagator U(t, s)

generated by H(t) = Hy,; + V (t) is well defined and satisfies (2.9).



10 Dario Bambusi, Benoit Grébert, Alberto Maspero, Didier Robert

An example of admissible perturbation is V (¢, x, &) = Z Ao 5(1)2€7 With a5 €
la+kB<2kl
Cy°(R,R). In particular if we choose Hy, = —% + x*, we can consider unbounded

perturbations of the form x?¢(t) and of course also zg(t) with g € C;°(R, R).

Remark 2.12. Our class of perturbations contains quite general pseudodifferential oper-
ators, however it is easy to see that multiplication operators (i.e. operators independent
of 0,) must be polynomials in x with coefficients which are possibly time dependent.

In the similar problem of reducibility more general classes of perturbations have been
treated in [Baml7]. We did not try to push the result in that direction. This is probably
non trivial in an abstract framework like the one we are using here.

Remark 2.13. We think that our method should also allow to deal with some perturba-
tions of the same order as the main term. For example it should be treatable the case
where V' is a quasihomogeneous polynomial of maximal order fulfilling some sign condi-

tion (more or less as in Theorem 2.12 of [Baml§]).

2.4 Perturbations of systems of order 1

In order to deal with perturbations of operators of order 1 we have to restrict to the case
where the dependence of the perturbation on time is quasiperiodic.

Let A := U,,crA,,, be a graded Lie algebra satisfying Assumption I with a reference
operator K.
Let Ky, Ky, - -+ , K, be d self-adjoint positive operators such that K; € A;, V1 < j <d.
Assume the following modified Assumption II:

Assumption IT':
(i) [Kj, K =0forany 0 < j, ¢ <d.
(i) Denote K = (K, --,Ky)andforT € R%, 7. K := Z 7; K.
Then for any A € A,,, the map 7 — A(7) := eiT'KAeI*SiE? € C(RYG A).
Remark 2.14. Forany B € A,, forany { € N, one has adﬁ(s)(B) € C°(RY Apigm—1))-

We also adapt our spectral conditions:

Assumption A’: K = (K, - , K;) has an entire joint spectrum, spec(K) C N? + X for
some A € R4 )\ > 0.
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Assumption B': There exist {v; }?:1, vj > 0s.t.

Hy= > v;K;, (2.13)
1<j<d
Ky = H, . (2.14)

In order to fix ideas one can think of the case of Harmonic oscillators, in which K; =
2 2 .

—0f + 35,1 <j<d.

Remark 2.15. Since the operators K are positive, the norm ||.||, defined using the oper-

ator Ky is equivalent to the norm defined using the operator K|, := ijl K;.

We consider both the case where

vi=(1v1,...,Vq)

is resonant and the case where it is nonresonant. To state the arithmetical assumptions on
v, we first recall the following well known lemma whose scheme of proof will be recalled
in the Appendix

Lemma 2.16. There exists d < d, a vector i € R? with components independent over the
rationals, and vectors v; € 7 7=1 .., d such that

d
j=1

Remark 2.17. For example

(i) if v is nonresonant (namely v -k = 0Vk € Z< implies k = 0), then v = v and v, = ej,
the standard basis of R%;

(ii) if v is completely resonant (namely Vj one has v; = Uk; with k; € Z), then d=1;
eg ifv=1,...,1), thenin =1, vy = (1,...,1).

Theorem 2.18. Assume that V (t) = W (wt) with W € Cp°(T", A,) a quasi-periodic
operator of order p < 1. Assume furthermore that (v,w) € R¥*" is a Diophantine vector,

namely that there exist 7 > 0, and k € R s.t.,

- Y n+d
wk+v-Al|>—->—— 0# (k). (2.16)
| 'z Gy 07 00

Then the propagator U(t, s) generated by H (t) = v- K+ W (wt) exists and satisfies (2.9).

Remark 2.19. The vector v is defined up to linear combinations with integer coefficients;
clearly condition (2.16)) does not depend on the choice of v.

Remark 2.20. We recall that Diophantine vectors form a subset of R+ of full measure
ifk >n+ d—1.
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2.5 Applications (ii)

Relativistic Schrodinger equation on Zoll manifolds. We consider the reduced Dirac
equation on a Zoll manifold M with mass o > 0

100 = \/Dg+ptp+V(wt,z, D), teR, zeM.

As in the case of the Schrodinger equation on Zoll manifolds, A, is the class of pseudod-
ifferential operators with symbols in S¥ (M) (see Definition [2.6).
In this case V' is assumed to be quasi-periodic in time.

Corollary 2.21 (Relativistic Schrodinger equation on Zoll manifolds). Assume that V (t) =
W(wt) with W € C>(T", A,) with p < 1. Assume furthermore that the non resonance

condition
Y
-k >——— NO#£keZ", VYmeZ 2.17
|w +m\_1+‘k’,{ +# m (2.17)

holds for some ~y > 0 and k. Then the propagator U (t, s) generated by H(t) = /A, + pu+
W (wt) exists and satisfies (2.9).

Harmonic oscillator in R%.  Consider the quantum Harmonic oscillator
0 = Hap+V(t)yy, xR (2.18)

d
H,:=-A+)Y via?,  V(t)=W(wtazD,). (2.19)
j=1

Here IV is the Weyl quantization of a symbol belonging to the following class

Definition 2.22. A function f will be called a symbol of order p € R if f € C®(R} x R)
and Vo, 8 € N% there exists Cy 5 > 0 s.1.

+
p_\B\Q\al ‘

05 02 f(@,6)] < Cap (1+ |2 + |€P) (2.20)
We will write f € S} .

The class (2.20) is the extension to higher dimensions of the class used in the anharmonic
oscillators (see Definition [2.8) and with k = [ = 1.

Remark 2.23. With our numerology, the symbol of the harmonic oscillator is of order 1,
€% + Zj VJZxJQ € S}, and not of order 2 as typically in the literature.

The classes A, are defined as in Definition[2.9] with symbols in the class S}".

Corollary 2.24. Assume that v is such that ¥ fulfills (2.16), and that W € C>(T"; A,)
with p < 1. Then the propagator U(t, s) of H(t) = H, + W (wt) exists and fulfills (2.9).
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Remark that after a trivial rescaling of the spatial variables, [, = zjzl Vj (—(9]2- + x?),
thus the corollary is a trivial application of Theorem [2.18

Remark 2.25. In the completely resonant case

-----

one has U = 1 and the set of the w's for which (2.16)) is fulfilled has full measure provided

K > n.

Remark 2.26. We note that in the resonant case there have been exhibited examples of
polynomial growths of the Sobolev norms. In particular see [Dell4] and [BGMRI8|] for
periodic in time perturbations; of course in such examples the frequency w does not fulfill
(2.16). Finally we recall also [BILPN], where some some random in time perturbations

are considered.

3 Proofs of the abstract theorems

3.1 Scheme of the proof

As explained in the introduction, the main step of the proof consists in proving a theorem
conjugating the original Hamiltonian to a Hamiltonian of the form (I.2); this will be done
in Theorem Subsequently we will apply Theorem 1.5 of [MR17], which essentially
states that, if H(¢) is such that for some N > —1

[H(t), Kol K{' € Cy (R, L(H")), (3.1)
then 3C). 5 > 0 such that
(L, s) ]l < Cry (t— )TN |[Y]l,, Yt seR. (3.2)

We come to the algorithm of conjugation of the original Hamiltonian to (1.2)). Before
discussing it, we need to know the way a Hamiltonian is changed by a time dependent
unitary transformation. This is the content of the following lemma.

Lemma 3.1. Let H(t) be a time dependent self-adjoint operator, and X (t) be a selfadjoint
family of operators. Assume that 1(t) = e "X (t) then

i =H(t)} << ip=H(t)y (3.3)

where

1
H(t) =¥ H(t)e O _ / X0 X (1) e 3 X®) (g5 . (3.4)
0
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This is seen by an explicit computation. For example see Lemma 3.2 of [Bam18]].
A further important property giving the expansion of an operator of the form /X (*) A ¢=1X(*)
in operators of decreasing order is stated in the following lemma.

Lemma 3.2. Let X € A, with p < 1 be a symmetric operator. Let A € A, withm € R.
Then X is selfadjoint and for any M > 1 we have

M ¢
™ AN = Z %adg((A) + Ry (1, X, A), vreR, (3.5)
=0

where Ry (7, X, A) € A (ms1)(1-p)-
In particular ad’ (A) € A,y and €™ Ae™ ™ € A, V7 € R,

The proof will be given in Sect.[3.2]

We describe now the algorithm which will lead to the smoothing Theorem the
proof is slightly different according to the set of assumptions one chooses. We start by
discussing it under the assumptions of Theorem [2.5] namely Assumption A and B. Sub-
sequently we will discuss the changes needed to deal with Theorem [2.18

We look for a change of variables of the form ¢ = (V) where X, (t) € A, .1 isa
self-adjoint operator which, due to the assumption p < p, has order smaller then one. We
will check that we also have X;(t) € A, , 1. Then ¢ fulfills the Schrodinger equation
ip = H™(t)p with

1
H*(t) := e X1(t) H(t) o iX1(t) _/ elsX1(t) Xl (t) e~ isX1(t) g
0
- . 1
= Ho +i[X(8), Ho] + V() +i[X.(8), V(£)] = 5 [X:(8), [Xa(t), Hol] + -+
1
_/ eisX1(t) Xl(t> efile(t) ds.
0

In view of the properties of the graded algebra we have [ X1, V] € Ay,_,, [ X1, [ X1, Ho|] €
As,_,, (Assumption I (iv)) and e*X1(®) X (¢) e X1 ¢ A .| (Lemma , therefore
one has

HY(t) = Ho +i[X1(t), Ho] + V() + ViT (¢, (3.6)

with ‘/1+ (t) € Cboo (R, Amin(p—/ﬁ-lﬁp—u))-
Now we look for X (¢) s.t.

i[Ho, X1(t)] =V (t) — (V (1)), (3.7)

where (V/(t)) is the average over T of ™0V (t)e~ ™0 (see (3.18))), which in particular
commutes with K. We will verify in Lemma [3.5]that there exists X s.t.

i[Ho, X1()] = V(t) + (V) € A, .
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Therefore using such a X to generate a unitary transformation, we get

H*(t) == Ho+(V(t)) + V7 (1), (3.8)
where V*(t) € Cp°(R, A,_s) with

d:=min(l,pu—1,u—p) >0. (3.9)

Therefore V*(t) is a perturbation of order lower than V(). Furthermore (V' (¢)) com-
mutes with K.

Iterating this procedure we will establish an ”almost” reducibility result that will be
stated and proved in Subsect. [3.4]

Then, using Theorem 1.5 of [MR17]], we immediately get Theorem [2.5]

In the case where Hy € A; the procedure has to be slightly modified since in this
case X7 and therefore X 1 has the same order as V' and thus it cannot be considered as a
remainder when analyzing H ™. In this case one rewrites

H"(t) = Ho +i[X1(t), Ho] + V(¢)

+i[Xq(t), V()] — =[Xq1(t), [X1(t), Ho)] + - - -

1
2
. 1 .
_ X —/ (11,0 (0] + ..} s,

0

so that eq. is substituted by
HT(t) = Hy +i[X(t), Ho) + V(t) — X1 (t) + V(1) , (3.10)

with V't e A, 5.,

5, :=1—p>0, 3.11)

so again it is more regular than V' (¢). Thus one is led to consider the new homological
equation
i[Ho, X1 (8)] + Xa(t) = V() — (V (1)) , (3.12)

where (V/(t)) has to commute with /. In order to be able to solve such an equation we
restrict to the case of V(¢) quasiperiodic in ¢ and, as explained in the introduction, we
develop a procedure based on a suitable Fourier expansion to construct X; and (V (¢)).
The details are given in Lemma which will ensure that such a homological equation
has a smooth solution and thus the procedure is well defined also in the case of order 1.

3.2 A couple of lemmas on flows

Lemma 3.3. (i) Let X € A, be symmetric w.r.t. the scalar product of H°. Then X has
a unique self-adjoint extension and e~ € L(H") Vr > 0 and V7 € R. Furthermore
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e "X is an isometry in HP.

(17) Assume that X (t) is a family of symmetric operators in A; s.t.

sup @;(X(t)) <oo, Vj>1. (3.13)

teR

Then there exist c,., C, > 0 s.t.
Gl < le ™l < Collell.,  VteR, vreo1].  (3.14)

Proof. (i) From the properties of the algebra A we have that X K; ' and [ X, K| K, ' are
of order 0. Thus by definition these operators belong to £L(H") Vr € R. Then the result
follows from Theorem 1.2 of [MR17]].

(ii) By item (i), for any ¢ € R and 7 € [0, 1] the operator e~ 7 X(

Y is an isometry in H°,
therefore
“e—er(t)er _ Hem-X(t) Kg e_lTX(t)¢||0 )

Then we have
oTXW KT oYWy — o) 4 i/T X (X (4), Kr] e X O dry
0
= K+ / "X (X (1), K§) Ky " Ky e X0y dry (3.15)
0
By the properties of the algebra A and one has that (using (2.1)-(2.3))
Sup I[X (@), Kol Ko " [l eoy < Cr < 400,
therefore taking the norm || - ||y of (3.13)) one gets the inequality

M”MWmswmﬁ/aw*MWmm.

0

Then by Gronwall we conclude that

e Oy, < o

|-, VteR, Vrel[-1,1].

This proves the majoration in (3.14)). The minoration follows simply by the identity 1) =

e TX M e=i7X()q) and the majoration. O

Proof of Lemma Selfadjointness was proven in the previous lemma. Let us apply to
the Lh.s. of (3.3)) the Taylor formula at 7 = 0. Then we get, with Ux(7) := ¢ and
adx(A) = i[X, A]

Ux(—T)AUx<T> (316)

T Mt M+1 M+1
— Z Fad‘;((A) +—=5 /0 (1 —s)" Uy (—s7)ady T (A) Ux(s7)ds .
— j! !

J
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Using Assumption I (iv), we have ad’ (4) € A,,_j1_,). We define the remainder R, (7, X, A)

to be the integral term in (3.16)), which, using also Lemma belongs to L£(H?, Hs~m+M+D=p))
Vs € R. Therefore the remainder R/ (7, X, A) is N-smoothing provided M + 1 > A{%;”.

As M can be taken arbitrary large, ™ Ae~'7X fulfills Assumption I (v), thus it belongs

to A,,. O

3.3 Solution of the Homological equations

The first homological equation. As we have seen in Section to prove Theorem [2.5]
we need to study an homological equation of the form

i[Ho, X] = A — (A), (3.17)
where A € A, and (A) is the average of A along the periodic flow of Kj:

1
o

2
(A) - / A(r)dr, A1) = ™0 Ao, (3.18)
0

Notice that the assumption on the spectrum of K (see Assumption A) entails that e?"*0 =
es™A thus for any A € A one has ™50 A ¢=2™K0 = A namely 7 — A(7) is 27 periodic.

Lemma 34. Let A € A,,, m € R Then (A) € A,, and
(Ko, (A)] =0. (3.19)

Proof. (A) € A,, is a consequence of Assumption II. Identity (3.19) follows by a direct
computation. O]

Lemma 3.5. (i) Let A € A,,, m € R. Then

1 2m
Y =— T(A—(A)(r)dr (3.20)
2 Jo
solves the homological equation
i[Ko, Y] =A— (A). (3.21)

FurtherY € A,, and if A is symmetric, so is Y.
(ii) Choose R > 0 such that f'(x) > 1 ifx > Randn € C*(R) such that n(x) = 1 if
x € [0,R], n(z) =0ifx > R+ 1. Define

Xo = (1= n(Ko)) (f'(Ko)) ' Y, (3.22)

with Y as in (3:20). Then Xy € Ay i1 and X = 3(Xo + X§) € Ap—piq1 is symmetric,
solves (3.17) modulo an error term in A,,,_1 provided A is symmetric. More precisely

i[Ho, X] = A — (A) + Ap_y . (3.23)
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We note for the sequel that if A € A,, then X € A,,_(,_1), namely we have a gain of
# — 1 > 0 in the smoothing order.

Proof. Assertion (i) is proved by integration by parts using that A(7) is 27-periodic.

To prove (i1), first remark that by Assumption B and Lemma e Si_l, thus it
is different from zero provided z > R is large enough. It follows that the function
T 1%”;)@ € S7#*! Therefore, by Lemmal|A.2} the operator (1 — n(Kjy)) (f'(Koy))™* €
A_,+1. Finally since Y € A,,, it follows that X, X € A,,,_,11.

We show now that X solves (3.23)). This is a consequence of the commutator expansion
Lemma. Indeed fix N > 2, then by Lemma [A.3|one has

[Ho, Xo] = [f(Ko), Xo] = f'(Ko)[Ko, Xo]

+ Z ‘%f(J)<K0)adJKO (X()) + RN+1(f7 XO)

2<j<N

with Ry 1(f, Xo) € Am—pr11ju-~n C Am-1. A
By Lemma and Assumption I, for any integer j > 2 one has that fU)(K) ady, (X) €
Ap—p14p—j C Am—1. Then we get

i[Ho, Xo] = if'(Ko)[Ko, Xo] + Am_1
B2 (1 n(Ko)ilKo, YT + A
(1= n(Ko)) (A—(A) + At
with 4,1 € A,,—1. Now put R := —n(Ky) (A — (A)). Since z — n(x) € ST, R

is a smoothing operator and thus A,, 1 + R € A,,_1. Now using that by construction
X = Xy + A,,—,, we easily see that X satisfies (3.23). O]

The second homological equation. We want to solve eq. (3.12)). Using the quasiperi-
odicity assumption V' (t) = W (wt), we look for a quasiperiodic solution X (t) = X (wt)
of the equation

w - Op X (wt) + i[Hy, X (wt)] = W (wt) — (W) . (3.24)

In order to define precisely (W), consider again the vectors v; and the frequencies 7; of
vjvj,onehasv- K = Z?:1(K - V)0,

Lemma 2.16] First remark that, since v = Z?Zl

so that, defining

K, =K-v;, K:=(K,.,K;, (3.25)

one has

Hy=v- K=i-K,

and furthermore, since v, has integer entries, then the joint spectrum of K= (f( Lo K B
is s.t. spec(K) C Z% + ), therefore for each operator B the map R? > 7 +— B¥(r) :=
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émK Be= ™K s periodic in each of the 7;’s. For A € C™(T", A,,), denote A*(6,7) :=
eiT-KA(Q)efiT-K'
By Assumption I, A* € C>(T™4 A,.). Define now

(4) =

L / A9, 7)dTde . (3.26)
(27T)n+d 'H‘n+<i

Remark 3.6. Let A € C*(T", A,,), m € R. Then by Assumption 11, (A) € A, is
independent of the angles and

[K;,(A)]=0, 1<j<d; [Ky(A)]=0. (3.27)

Lemma 3.7. Ler A € Cp° (T, A,,), m € R. Provided 2.16) holds, the homological
equation (3.24) has a solution X € C*(T", A,,). Furthermore if A is symmetric then X

is symmetric as well.

Proof. Since A? is defined on T, we can expand it in Fourier series:

Aﬁ(e,r)— Z AMGMHT

(k,0)ezn+d

where

: 1
= / A¥(9, 7)e RO dodr.
(27T)n+d Tn+d

Notice that

A(9) = AY0,0) = Z A e, (3.28)
( Zn+d
(A) = A}, (3.29)
Then, instead of solving directly the homological equation (3.24), we solve

w0y X4 (0, 7)+i[Ho, X*(0,7)] = (W — (W) (0,7), VOeT", vreT. (3.30)

Clearly if we find a smooth solution X*(6, 7) of this equation, then X (6) := X*¥(6,0)
solves the original homological equation (3.24). Now remark that, using

X0, r4+7) = e”KXﬁ(O, T')e_”f{
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we have
d ) p ) )
i[H07 Xﬁ<97 T)] = Z 17]1[ij X (9, T)] = Z Dj % . eieKj Xﬁ(e’ T)e—ieKj
]:1 ]:1 €=
d 4 ﬁ
=Y 0| XHO.7+ee))
— de|._,
J=1 €
d d~
= > Xhg| dometortrre)
(k,0)zn+d =0 j=1
= Z iv - £X£7€ei(k'9+é'7) .
(k,0)ezn+d

Therefore, expanding in Fourier series, equation (3.30)) is equivalent to
i(w-k+o-OXE,=Wi,, (k) #0

Hence define

Xp,=—i if (k,0)#0. (3.31)

(w-k+v-0)

Since W* is in C’OO(']I“"”, A,,) we get that for any j, N > 1 there exists Cy ; such that
o7 (WEe) < Okl + 1),

So we get easily that if X is defined by X (6) = X*(#,0) and X* has Fourier coefficients

(3:31) with X} ) = 0, then X € C{°(T", A,p). O

3.4 The iterative Lemma

We state and prove the iterative Lemma which is the main step for the proof of our main
results.

Theorem 3.8. Assume that the assumptions of Theorem[2.5 or of Theorem are satis-
fied.

There exist § > 0 and a sequence {X;(t)};>1 of self-adjoint (time-dependent) opera-
tors in H with X; € C°(R, Ap—(u—1)—(j-1)s), such that Yj, the inequalities (3.14) are
satisfied; for any N > 1 the change of variables

Y = X0 TN, (3.32)
transforms Hy + V (t) into the Hamiltonian

HM(t) .= Hy + ZM(t) + V™ (1) (3.33)
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where ZN) € C°(R, A,) commutes with Ky, i.e. [Z™N)| K] = 0, while VIY) € C°(R, A,_ns).
Furthermore, under the assumptions of Theorem one has that ZN) is independent

of the angles and
ZM: K)]=0, Vi=1,..d. (3.34)

Proof. 1t is proved by recurrence. Consider first the assumptions of Theorem [2.5] Using

Lemmas one gets the theorem for N = 1 with ZW(t) = (V (1)) €

C*(R,A,). By Lemma [ZW(t), Ky] = 0. In this case § can be taken as in (3.9).
The iterative step N — NN + 1 is proved following the same lines, just adding the remark
that e X~n+1 Z(N)e=iXnp1 _ Z(N) Ap—(p—l)—N&—i—p—l C Ap_(N+1)5.

Under the assumptions of Theorem [2.18] the result is proved along the same lines,

with ¢ as in (3.11)). The property (3.34) follows by Remark 3.6 O

3.5 Proof of Theorem 2.5

By Theorem the operator H (t) is conjugated to H™)(¢). So we apply Theorem 1.5
of [MR17] to the Schrodinger equation for H (V) (t). More precisely we have

[H(N) (t)? KO] = [V(N) (t)v KO] S C(()) (R7 Ap—N&)

and thus, by choosing N large enough, (3.2)) ensures the result for the propagator U (t, s)
of HN)(t).

Now since H (t) is conjugated to H™)(t), H(t) generates a propagator U(t, s) in the
Hilbert space scale H" unitarily equivalent to the propagator Uy (¢, s). Therefore, using
also (3.14)), the propagator U(t, s) fulfills (2.9)), thus yielding the result. O

4 Applications

In this section we prove Corollary [2.7, Corollary 2.11]and Corollary 2.21]

4.1 Zoll manifolds

To begin with we show how to put ourselves in the abstract setup. So first we define the
operator K. This will be achieved by exploiting the spectral properties of the operator
A,4. Applying Theorem 1 of Colin de Verdiére [CdV79], there exists a pseudodifferential
operator () of order —1, commuting with A/, such that Spec[\/A_g + Q] € N+ \ with
some A > 0. We can assume A > 0. If not, denoting II_ the projector on the non positive
eigenvalues, we replace () by ) + CII_ with C' > 0 large enough; remark that II_
commutes with A, and is a smoothing operator. So we define

Ko =0, +Q, Hy:= KZ . 4.1)
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Now remark that Hy = A, 4+ 2Q+/A, + Q?, so we have
Hy= A4+ Qo
where () is a pseudo-differential operator of order 0 and therefore
Ht)=N,+ V()= Hy+V(t), V(t):=V(t)— Qo

and we are in the setup of the abstract Schrodinger equation (I.1)) with the new perturba-
tion V/ (¢).

Remark that #" := Dom((Ky)"), r > 0, coincides with the classical Sobolev space
H"(M) and one has the equivalence of norms

Cr “7/1‘ HT™(M) < HwHT <G, Hw’

We define the class A, to be the class of pseudodifferential operators whose (real valued)
symbols belong to S’7'(M). Clearly Ky € A; (recall that II_ is a smoothing operator). It
is classical that Assumptions I and II are fulfilled (see e.g. [Hor85] and appendix [B).

H™(M) VreR.

Remark 4.1. We have implicitly used here that on a compact manifold any smoothing
operator has a symbol in the class S °° (M ). This is true because on a compact manifold
any operator is properly supported [Hor83l]. In particular Assumption I (v) is satisfied
for A, = Op(SH(M)). Let us remark that this property is wrong for classical pseudo-
differential operators on M = R

Hence the topology on A™ is the topology defined on S (M).

Moreover the uniform boundness in Assumption Il is checked using the periodicity of the

classical flow.

Proof of Corollary[2.7] Assumption A holds true by construction of K, Assumption B
holds with f(x) = 2 and therefore 1 := 2. Since V (¢) is a pseudodifferential opera-
tor of order p < 2 whose symbol belongs to C;°(RR, S%(M)), one verifies easily, using
pseudodifferential calculus (in particular estimates (Z.1)—(2.3)), that V (£) = V(t) — Qo €
Cp°(R, A,). Hence the corollary follows from Theorem 2.5] O

4.2 Anharmonic oscillators

We recall that for a symbol a (in the sense of Definition we denote by a(z, D, ) its
Weyl quantization

(ale. Do) (x) = % / / g g <x ;y, g) D) dyde . 42)
y,§€

We endow S”_ (defined in Definition [2.8) with the family of seminorms

02 a(r,)
oi(a) = Z sup i jeN. (4.3)
18l (@O [ko(z, §)]7 ¥
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Remark 4.2. As we have seen on a compact manifold (see Remark[d.1) we can use semi-
norms on symbols in S} on the corresponding operators classes modulo smoothing op-
erators. The reason here is that smoothing operators are operators A € L(S'(R), S(R)),
where S'(R) is the Schwartz space of temperate distributions on R. It is well known that
equivalently the Schwartz kernel K 4 of A is in S(R x R) so its Weyl symbol ¢ is also in
S(R x R). These facts result from the two formulas: Ka(x,y) = (Ad,, 0,) and

oi(x, &) = /Re_mgKA(:r + g,x — g)du

Then we can easily check that Assumption I (v) is satisfied for A,, = Op®”(S™).

The operator K is defined using the spectral properties of the Hamiltonian H},; de-
fined in (2.T1) that were studied in detail in [HR82b]; in that paper an accurate Bohr-
Sommerfeld rule for the the eigenvalues of Hj,; was obtained and the existence of a pseu-
dodifferential operator () of order -1 ﬂTherefore we define

2kl

k+l 2kl
K() = szjl + Q 5 H() = Kok-H .

We define A, to be the class of pseudodifferential operator with symbols in S7". Notice
that by construction A, C L(H*,H* ™) for all s € R. It is classical that A fulfills
Assumptions I and II (see [HR82b, HR82al]).

On the other hand Assumptions A and B are fulfilled with p := ]f—_’fl >1(ask+1>3).

Furthermore one has -

Hyyo = (Ko — Q)% = K¢ + Qo

where () is a pseudodifferential operator of order ,f—fl — 2. Therefore

H(t)=Hy+V({t)=Ho+V(t), V() :=V({t)+Q

and once again we are in the setup of the abstract Schrodinger equation (1.1)) with the new
perturbation V().

Proof of Corollary[2.11} Since V'(t) is a pseudodifferential operator of order p < ,f—_’fl

whose symbol and its time-derivatives have uniformly (in time) bounded seminorms, one
verifies that V (t) = V() + Qo € C;°(R, A,). Hence the corollary follows from Theorem

2.5 []

4 Actually [HR82b] proves that ) has a symbol which is quasi-homogeneous of degree —k — [. Here a
symbol f(z,§) is quasi-homogeneous of degree m if

FNz, XEE) = A f(2,6), YA>0, V(z,&) eR?\{0}.

It is classical [HR82b, [HR82a] that if f is quasi-homogeneous of degree m, then it is a symbol in the class
k4l
SQE/ (k*+D " _1 such that Spec[H. el T Q] € N+ X (A > 0) was proven. Note that for our numerology
k4l
H 2" is of order 1 by definition.
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4.3 Relativistic Schrodinger equation on Zoll manifolds

The proof of Corollary 2.21]is along the lines developed in Subsectiond.1] Let us remark
that the operator /A, + pu — /A, is of order —1. Hence, defining K as in (4.1)), one
has again /A, + 1 = Ko + Qo w1th (o of order —1. Therefore

= /Dy + pu+V(wt,x,D,) = Ko+ V(wt)
with the new perturbation V (wt) € C(T", A,).
This time we verify Assumptions II', A’ and B’ with d = 1 and K; = Ky, = H,.
Concerning the nonresonance condition just remark that in this case we have that v has

only one component given by 1
Thus Theorem [2.18/immediately yields Corollary

A Technical lemmas on classical symbols

We begin with the following lemma whose proof is completely standard (and we skip it)
Lemma A.l. (i) If f € S% g € S®then fg € S,

(ii) If f € S®, then fU) € S,

(iii) If x — n(x) is a smooth cut-off function on R, then n € S~.

(iv) The function f(x) = 2% a > 0, is a classical elliptic symbol in S.
Lemma A.2. If g € 5", n € R, then g(K,) € A,.

Proof. By definition g(x) = Y ;cy_y ¢;2* 7 + R(x), |R(z)| < Cyla# "] for || >
1. Then g(Ky) = ZO<]<N 1 ¢;K{™ + R(Ky), where R(K)) is defined by functional
calculus as R(Ky) := [;° R(A)dEk,(\), dEk,(\) being the spectral resolution of K.
By Assumption I, ZogjgN—l ¢;Ki™7 € A, while the operator R(K,) is N-smoothing
(in the sense of Definition . Since N can be taken arbitrarily large, g(Kj) fulfills
Assumption I (v), therefore it belongs to A,,. The other properties are easily verified using
such decomposition. L

Finally, we recall a commutator expansion lemma following from [DG97, Lemma
C.3.1]:

Lemma A.3. Let f € S, and W € A,,. Then for all N > [p] we have

[f(EKo), W] = Z .l,f(j)(Ko)ad]}{OW + Ry (f, Ko, W),

1<G<N <7
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where Ry i1 (f, Ko, W) € Appjsm—n-
Moreover if W depends on time t with uniform estimates in A,, then it is also true for

RN+1(f7 K07 W)
Proof. Apply [DG97, Lemma C.3.1] to the bounded operator B = K, "W ]

B An abstract proof of Egorov Theorem

In order to check Assumption II, we introduce the following weaker condition

Assumption II-CL: For every m € R and every A € A, there exist ®®(A4) €
CY(Ry, A) and R(A,t) € C°(Ry, A1) such that ®©(A) = A and

%@“ (A) =i '[@(A), Ko] + R(A, t) (B.1)

In applications in a pseudodifferential operator setting, we have A = Op(a), a is the
symbol of A and one can choose ®*)(A) = Op(a o ¢*) where ¢' is the classical flow of
the symbol of K. Then one has to verify that a o ¢' belongs to the same symbol class as
a using the periodicity of ¢ (see for example [Tay91])).

Theorem B.1 (Abstract Egorov Theorem). If Assumption I and Assumption II-CL are
satisfied then for any A € A,,, the map defined on R:

T A(T) := eTE0 Ae7iTE0 € CO(R, A,,).

In particular if T — A(T) is periodic on R then A(-) € CY(R, A,,) and Assumption Il
holds true.

Remark B.2. Notice that if the spectrum of K, is discrete with eigenvalues {\;};>o such
that \; — A\, € Z for all j, k € N then T — A(T) is periodic on R.

Proof. We follow [Rob87]] (p. 202-207). Let U (t) = e~ "0, Compute

% (U(r =)@ (AU (t — 7))
: d
= U(r —t) (1[<1><T> (A), Ko| + E@”(A)) Ut —7).

J/

-~

R(A,7)

So using (B.1) and integrate in 7 between 0 and ¢ we get
t
U(—t)AU(t) = W (A) — / Ut —t)R(A, T)U(t — 7)dr. (B.2)
0

Now we iterate from this formula. In the following step we apply this formula for ev-
ery 7 to Apew = R(A, 7). In particular Assumption II-CL implies that %QD(”(A,LW) =
i [ DD (Apew), Ko] + R(Apew, t), 50 we get
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U( )AU )+A1( )
/ /t TU 7'—7'1 —t)R(R(A 7') )U(t_T_ﬁ)deTl

where Ay(t) = ®V(A), Ay(t) = [} ®(R(A,7))dT € A,y and
R(R(A, 1), 7 — 7'1) € Ao
At the step N we get easily by induction:

U( Ao +A1() —i—AN()
t—70 t—10— " —TN
/ / / dT()dTl d
U(ro+ 11 + - +TN—t)R (A Toy Ty, TN) Ut —Tg— 11 — -+ — Tn),

where A; € C°(R, A,,_;) and RM (A, 71, ,7n) € CORNTL A, _n_1).
Now we remark that the remainder term is as smoothing as we want by taking N large

enough, so the algebra being stable by smoothing perturbations we get the A(:) € A,,.
[

C Proof of Lemma 2.16

We reproduce here the proof given in the lecture notes by Giorgilli [G1o]] (in particular the
technical results are contained in Appendix A). A general presentation containing also the
results that we use here can be found in [Sie89].

We start by stating without proof a simple Lemma.

Lemma C.1. Let ey, ...,e, and €}, ..., €}, be two basis of Z°; then the matrix M = (M;;)

s.te,=>" ; Mije; is unimodular with integer entries.
Then one has the following corollary.

Corollary C.2. A collection of vectors e; € 7%, j = 1,....d, is a basis of Z% if and only if

the determinant of the matrix having e; as rows is 1.

The corollary immediately follows from Lemma|[C.I|and the remark that such a prop-
erty holds for the canonical basis of Z<.
Define now the resonance modulus M, of v by

M, = {kEZd : I/-k:O} )
This is a discrete subgroup of R? which satisfies

span(M,)NZ = M, . (C.1)
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Let 0 < r < d — 1 be the dimension of M,,. It is well known that any discrete subgroup
of R¢ admits a basis. Let e, ..., e,, be a basis of M,,, and remark that the vectors e; have
integer components. Then the following result holdﬂ

Lemma C.3. There exist d := d — r vectors uy, ..., u; with integer entries, such that

€1, ..., e, Uy, ..., us form a basis of Z°.
Then one obtains immediately the following

Corollary C.4. Let M be the matrix with rows given by the vectors e; and the vectors
u;; define v := Muv, then one has U; = 0, Vi = 1, ...,r, while U; :== U4, i = 1,...,d are

independent over the rationals.

Proof of Lemma Consider the matrix M ~!: since M is unimodular with integer
entries, the same is true for M/ ~!, and one has ¥ = M~'; however, since the first r
components of 7 vanish, such an expression reduces to a linear combination of vectors
with integer entries, the coefficients of the combination being vy, ..., ;. O]
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