
9 L2 continuity

In this section we prove that pseudodifferential operators are bounded in Sobolev spaces. We
will first prove the theorem assuming that Op (a) has a symbol in the class S0; subsequently we
will state an improved version of the the theorem which requires the symbol a only to have a a
finite numbers of derivatives bounded.

In the course of the proof we will use some general results which are interesting by themselves,
and we prove them here.

9.1 Shur test

Let K(x, y) ∈ L1(Rd × Rd,C). Define the linear operator with kernel K as

[AKu](x) :=

�

Rd

K(x, y)u(y) dy.

We introduce

�A�L∞
x L1

y
:= sup

x

�
|K(x, y)| dy,

�A�L∞
y L1

x
:= sup

y

�
|K(x, y)| dx.

Proposition 9.1 (Schur test). ∀p ∈ [1,+∞], ∀u ∈ Lp(Rd) we have

�Au�Lp ≤ �A�1−
1
p

L∞
x L1

y
�A�

1
p

L∞
y L1

x
�u�Lp .

Proof. If p = ∞ the estimate is obvious. If p < ∞, from Hölder inequality we get
�

|K(x, y)||u(y)|dy =

�
|K(x, y)|1− 1

p

� �� �
Lp∗

|K(x, y)| 1p |u(y)|� �� �
Lp

dy

≤
��

|K(x, y)|dy
�1− 1

p
��

|K(x, y)||u(y)|pdy
� 1

p

,

hence ��
|K(x, y)||u(y)|dy

�p

≤ �A�p−1
L∞

x L1
y

�
|K(x, y)||u(y)|pdy.

It follows that

�Au�pLp ≤
� ��

|K(x, y)||u(y)|dy
�p

dx ≤ �A�p−1
L∞

x L1
y

� �
|K(x, y)||u(y)|pdydx.

Changing the order of integration we obtain the result.

9.2 Cotlar-Stein theorem

We start with some motivation. We have a linear operator T : X → X and we want to compute
�T�. In many cases it is possibile to decompose the operator in pieces T =

�
i Ti in such a

way that it is easier to compute the norm of the single pieces Ti. However the gain in the
decomposition is lost if one estimates brutally with triangular inequality �T� ≤ �

i �Ti�, except
in the case the norms �Ti� enjoy decay properties.
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There are however better cases: to show them consider for the moment the case T : Rn → Rn

has a block diagonal structure

T =



Λ1

. . .

Λm




with Λi a mi ×mi matrix. Then we have

T =
�

i

Ti, Ti := Πi ΛiΠi

where Πi is the orthogonal projector on the i-th block; clearly

�T� = max
i

�Λi�.

The improvement is due to the fact that the decomposition is orthogonal:

T ∗
j Ti = (ΠjΛjΠj)

∗ ΠiΛiΠi = Π∗
jΛjΠ

∗
jΠiΛiΠi = 0 , ∀i �= j

thus

�Tx�2 = �Tx, Tx� = �T ∗Tx, x� =
�

i,j

�
T ∗
j Tix, x

�

=
�

i

�T ∗
i Tix, x� =

�

i

�TiΠix�2 ≤ sup
i

�Ti��x�

The crucial point is that T ∗
j Ti = TjT

∗
i = δji. The idea is simply to replace this strong vanishing

requirement by a condition that ensures sufficient decay in |j − k|.
Theorem 9.2 (Cotlar-Stein). Consider (Aj)j∈N a family of bounded operators on a Hilbert space
H. Assume that there exists M > 0 such that

sup
j

�

k

�A∗
jAk�1/2 ≤ M, sup

k

�

j

�AkA
∗
j�1/2 ≤ M.

Then defining

SN =
�

j≤N

Aj

we have
�SN� ≤ M, ∀N ∈ N. (9.1)

Before proving the theorem, we recall a preliminary result:

Lemma 9.3 (TT ∗ lemma). Let A be a linear bounded operator on an Hilbert space H. Then

�A� = �A∗� = �A∗A�1/2 = �AA∗�1/2 (9.2)

Proof. Take u ∈ H with �u� ≤ 1. We have that

�Au�2 = �Au,Au�
= �A∗Au, a�
≤ �A∗A��u�2
≤ �A∗A�
≤ �A∗��A�
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We obtain that
�A�2 ≤ �A∗A� ≤ �A∗��A� (9.3)

from which we also deduce
�A� ≤ �A∗�.

By substituting A with A∗ and using that (A∗)∗ = A, we obtain the reverse inequality

�A∗�2 ≤ �AA∗� ≤ �A��A∗� (9.4)

which implies also �A∗� ≤ �A�. Thus all the inequalities are actually equalities.

Proof of Cotlar-Stein theorem. By the previous lemma applied to Ai we get �Ai� = �A∗
iAi�1/2 ≤

M which gives

�
�

j≤N

Aj� ≤ NM ;

clearly this bound is rough since it depends on N .
To eliminate this dependence we use the “power trick”, which consists in writing the norm

of SN as the norm of a power of S∗
NSN or SNS∗

N . In particular

�S∗
NSN� = �SN�2

�(S∗
NSN )2� = �(S∗

NSN )∗ (S∗
NSN )� = �S∗

NSN�2 = �SN�4

and iterating we have that

�(S∗
NSN )m� = �SN�2m, ∀m ∈ N

which we write as
�SN� = �(S∗

NSN )m�1/2m, ∀m ∈ N.
But now we can exploit almost orthogonality:

(S∗
NSN )m =

�

j1,k1,...,jm,km

A∗
j1Ak1

· · ·A∗
jmAkm

Now we estimate each term in the sum in two different ways: on one hand we have

�A∗
j1Ak1 · · ·A∗

jmAkm� ≤ �A∗
j1Ak1� · · · �A∗

jmAkm�. (9.5)

On the other hand we have

�A∗
j1Ak1

· · ·A∗
jmAkm

� ≤ �A∗
j1��Ak1

A∗
j2� · · · �Akm−1

A∗
jm� �Akm

� (9.6)

Using min(a, b) ≤ (ab)1/2 for any a, b ≥ 0, we get

�(S∗
NSN )m� ≤

�

j1,...,jm
k1,...,km

�Aj1�1/2 �A∗
j1Ak1

�1/2 �Ak1
A∗

j2�1/2 . . . �Akm−1
A∗

jm�1/2�A∗
jmAkm

�1/2�Akm
�1/2

≤ M
�

j1,k1

�A∗
j1Ak1�1/2

�

j2

�Ak1A
∗
j2�1/2 · · ·

�

jm

�Akm−1A
∗
jm�1/2

�

km

�A∗
jmAkm�1/2

≤ M2m
�

j1

1 ≤ M2mN

hence we get that

�SN� = �(S∗
NSN )m�1/2m ≤ MN1/2m, ∀m ∈ N.

Taking m � 1 gives the thesis.

64



We state now a useful corollary of Cotlar-Stein theorem

Corollary 9.4. With the same assumptions of Cotlar-Stein theorem, the series S :=
�

j Aj

converges in the strong operator topology, namely

∀u ∈ H, ∃ lim
N→∞

SNu =: Su. (9.7)

Proof. Take first u ∈ RanA∗
k, namely ∃y ∈ H such that u = A∗

ky. We show that {SNu}N is a
Cauchy sequence. Indeed

�(SN − SN �)u� = �
N�

j=N �

AjA
∗
ky� ≤

�

j

�AjA
∗
k��y� ≤ sup

k

N�

j=N �

�A∗
kAj��y� → 0

as N,N � → ∞ by the assumptions of Cotlar-Stein. Therefore
�

j Aju converges to an element
of H.

Denote by U = ∪kRanA
∗
k. The previous argument shows that

�
j Aju converges for any

u ∈ U . We show now that it converges for any element u ∈ U . Again we show that {SNu}N is a
Cauchy sequence. Take � > 0 arbitrary and y ∈ U so that �x− y� ≤ �. Then using the previous
step and the conclusion of Cotlar-Stein (9.1) we get

�(SN − SN �)u� ≤ �(SN − SN �)y�+ �SN (x− y)�+ �SN �(x− y)�
≤ C�+ 2M�

Finally take x ∈ U
⊥
. Indeed take x ∈ U

⊥
. In particular �x,A∗

ky� = 0 for any k ∈ N and
y ∈ H. It follows that x ∈ kerAk for any k. Thus

�
j Ajx = 0.

Remark 9.5. Remark that it is not true that SN converges to S in the operator norm: as
an example take H = �2(N), Aj := Πj = �·, ej� ej the projection on the j-th element of the
basis. Then Π∗

jΠk = δj,k, so the assumptions of Cotlar-Stein are fulfilled. Indeed one has that
SNx =

�
j≤N Πjx converges to x ∀x, but SN does not converges to the identity in the operator

topology, as �1− SN� = 1 for any N .

9.3 A first result on boundedness on L2

We shall prove the following result:

Theorem 9.6. Let a ∈ S0. Then Op (a) extends to a bounded operator from L2 → L2 with the
following estimate: there exist K ∈ N and C > 0 (independent of a) such that

�Op (a)ψ�L2 ≤ C℘0
K(a)�ψ�L2 , ∀ψ ∈ L2.

We assume that Theorem 9.6 holds true and announce immediately the continuity in Sobolev
spaces, which is an easy corollary.

Corollary 9.7. Let a ∈ Sm, m ∈ R. Then Op (a) extends to a bounded operator Hs → Hs−m

with the estimate: ∀s there exist Ks ∈ N and Cs > 0 that

�Op (a)ψ�Hs−m ≤ Cs ℘
m
Ks

(a)�ψ�Hs , ∀ψ ∈ Hs.

Remark 9.8. In particular if the symbol has a positive order then Op (a) loses regularity, and
if the order is negative then Op (a) gains regularity.
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Proof. We know that �ξ�s ∈ Ss ∀s ∈ R. Let �D�s = Op (�ξ�s). We know that

�ψ�Hs = � �ξ�s �ψ�L2 = � �D�s ψ�L2 .

Moreover �D�s is invertible with inverse �D�−s
(it is a Fourier multiplier). Thus

�Op (a)ψ�Hs−m = � �D�s−m
Op (a)ψ�L2 = � �D�s−m

Op (a) �D�−s �D�s ψ�L2 .

Now �D�s−m
Op (a) �D�−s

has symbol �ξ�s−m
#a# �ξ�−s ∈ S0, therefore by L2 continuity theo-

rem

�Op (a)ψ�Hs−m ≤ C ℘0
K0

(�ξ�s−m
#a# �ξ�−s

) � �D�s ψ�L2 ≤ Cs℘
m
Ks

(a)� �D�s ψ�L2 .

Proof of Theorem 9.6 We split the proof into different cases.

(i) Case a ∈ S−n−1. Then Op (a) has integral kernel

K(x, y) =
1

(2π)n

�
ei(x−y)ξa(x, ξ) dξ,

and one has

|K(x, y)| ≤ (2π)−n

�
|a(x, ξ)| dξ ≤ (2π)−nC

�
�ξ�−n−1

dξ < +∞.

Therefore, by the dominated convergence theorem, K ∈ C0(Rd × Rd,R) is a bounded and
continuous function.

It can be easily verified that (x−y)αK(x, y) is the integral kernel of Op
�
i|α|∂α

ξ a(x, ξ)
�
, hence

|(x− y)αK(x, y)| ≤
����(2π)−n

�
ei(x−y)ξi|α|(∂α

ξ a)(x, ξ)dξ

����

≤
�

|∂α
ξ a(x, ξ)|dξ ≤ ℘−n−1

|α| (a)

�
dξ

�ξ�n+1+|α| ≤ C ℘−n−1
K (a) < ∞.

Therefor we get off - diagonal decay :

|K(x, y)| ≤ C ℘−n−1
K (a)

1 + |x− y|n+1
, ∀x, y ∈ Rn (9.8)

One concludes using Schur test, as supx
�
|K(x, y)|dy = supy

�
|K(x, y)|dx < ∞.

(ii) Case a ∈ Sm, m < 0. We observe that

�Op (a)u�2L2 = (Op (a)u,Op (a)u)L2 = (Op (a)
∗
Op (a)u, u)L2 = (Op (a∗#a)u, u)L2 .

If m ≤ −n+1
2 then a∗#a ∈ S2m ⊂ S−n−1. Hence from point (i) we have that Op (a∗#a) is

bounded L2 → L2 and

�a(x,D)u�2L2 ≤ �u�L2�Op (a∗#a)u�L2 ≤ C ℘2m
K� (a∗#a)�u�2L2 ≤ C ℘m

K(a)2�u�2L2

by symbolic calculus.
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Now we iterate. If m ≤ −n+1
4 , we obtain

Opau�2L2 ≤ �u�L2� Op (a∗#a)� �� �
∈S2m⊂S−n+1

2

u�2L2 ≤ C℘m
K(a)�u�L2 .

We continue iterating in this way with −n+1
8 ,−n+1

16 , · · · and find the estimate ∀m < 0.

(iii) Case a ∈ S0. Let M > 2 supR2n |a(x, ξ)|2. Then M − |a(x, ξ)|2 ≥ M/2 > 0 and hence
the function

c(x, ξ) :=
�

M − |a(x, ξ)|2 ∈ S0,

since f(t) =
√
t is C∞ for t ≥ M/2 > 0. Now we have that

Op (c)
∗
Op (c) = Op (c∗#c)

and

c∗#c = c∗c+ S−1

= cc+ S−1

= |c|2 + S−1

= M − |a|2 + S−1

= M − a∗a+ S−1,

So we obtain

0 ≤ �Op (c)u�2L2 = (Op (c)
∗
Op (c)u, u) = (Op (c∗#c)u, u) = ((Op (M)−Op (a∗#a)+r−1(x,D))u, u),

and using item (ii) we finally get

�Op (a)u�2L2 ≤ M�u�L2 + �r−1(x,D)u�L2�u�L2

step (ii)

≤ (M + C)�u�2L2 .

9.4 Calderón - Vaillancourt theorem

In this section we improve Theorem 9.6 by showing that it is enough to require boundedness on
a finite number of derivatives of the symbol. In particular we will prove the following result:

Theorem 9.9 (Calderón - Vaillancourt). Assume that a ∈ C2d+1(Rd × Rd) fulfills

|a|2d+1 :=
�

|α+β|≤2d+1

sup
x,ξ∈Rd

�
|∂α

x a(x, ξ)|+
���∂β

ξ a(x, ξ)
���
�
< ∞. (9.9)

Then there exists a constant Cd > 0 such that

�Op (a) �L(L2) ≤ Cd|a|2d+1. (9.10)

Before proving Theorem 9.9 we need the following lemma:

Lemma 9.10. There exists χ ∈ C∞
0 (Rd) with suppχ ⊂ [− 2

3 ,
2
3 ]

d such that

�

j∈Zd

χ(x− j) = 1.
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Proof. Take θ0 ∈ C∞
0 (R), θ0 ≥ 0, θ0 ≡ 1 in [− 1

2 ,
1
2 ], supp θ0 ⊂ [− 2

3 ,
2
3 ]. Put

θ(x) =
�

j∈Z
θ0(x− j), x ∈ R.

Then θ is periodic on Z, i.e. θ(x + k) = θ(x) ∀k ∈ Z, smooth, θ(x) ≥ 1 ∀x (indeed, for any x,
there exists j ∈ N s.t. x− j ∈ [− 1

2 ,
1
2 ]). Define

χ(x1, . . . , xd) =

d�

n=1

θ0(xn)

θ(xn)
.

One checks that χ fulfills the wanted properties.

We prove now Theorem 9.9.

Proof of Theorem 9.9. It is sufficient to show that the operator

Au(x) =

�
eixξ a(x, ξ)u(ξ)dξ

maps continuously L2 → L2. Indeed Op (a) = A ◦ F and the result follows by the continuity of
F on L2.

The idea is to decompose the operator A in almost orthogonal packets, and then use Cotlar-
Stein to bound the norm.

We make a partition of the phase space R2d as following:

1 =
�

�,k∈Zd

χk,�(x, ξ), χk,�(x, ξ) := χ(x− k)χ(ξ − �)

where χ is the function of Lemma 9.10. Define

[Ak,�u](x) :=

�

Rd

eixξ a(x, ξ)χk,�(x, ξ)u(ξ)dξ, ∀u ∈ S

First by Schur criterium we have

sup
k,�

�Ak,�� ≤ C sup |a(x, ξ)|, (9.11)

thanks to the fact that each χk,� has compact support.
Now we claim that

�A∗
k,� Ak�,��� ≤ Cd |a|22d+1

�k − k��2d+1 ��− ���2d+1

�Ak,� A
∗
k�,��� ≤ Cd |a|22d+1

�k − k��2d+1 ��− ���2d+1

(9.12)

for all k, k�, �, �� ∈ Z.
Since the square roots of (9.12) are summable, we apply Cotlar-Stein theorem 9.2 and get

that for any integer N ∈ N

�
�

|k|≤N

�

|�|≤N

Ak,�u� ≤ Cd |a|2d+1�u�L2 , ∀u ∈ S(Rd) (9.13)
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Then, denoting

ANu :=
�

|k|,|�|≤N

Ak,�u, u ∈ S(Rd),

we have that
(ANu)(x) → (Au)(x)

by dominated convergence theorem, since 1 =
�

�,k χk,�(x, ξ). Hence by Fatou lemma

�Au� = � lim
N→∞

Au� ≤ lim inf
N→∞

�ANu� ≤ Cd |a|2d+1�u�L2 , ∀u ∈ S(Rd)

which by density of S(Rd) into L2 concludes the proof.
To prove (9.12) we note that

(A∗
k,�g)(ξ) =

�
e−iξx ak,�(x, ξ) g(x) dx.

It follows that

(A∗
k,� Ak�,��g)(ξ) =

�
Kk,�

k�,��(ξ, η) g(η)dη

with integral kernel

Kk,�
k�,��(ξ, η) =

�
e−ix(ξ−η)a(x, ξ)χk,�(x, ξ) a(x, η)χk�,��(x, η)dx

=

�
e−ix(ξ−η)a(x, ξ) a(x, η)χ(x− k)χ(ξ − �)χ(x− k�)χ(η − ��)dx

We notice immediately that the kernel is zero if

|k − k�| ≥ 4 (9.14)

because the supports of χ(x− k) and χ(x− k�) are disjoints. So we restrict to |k − k�| ≤ 4.
So we need to prove that the kernel has decay in |�− ��|. Remark immediately that the kernel

is zero also for
|ξ − �| ≥ 1, |η − ��| ≥ 1.

It follows that we can restrict to |ξ − �| ≤ 1, |η − ��| ≤ 1. Now given �, �� with |� − ��| ≥ 4, we
have the bound

|ξ − η| ≥ |�− ��|− |ξ − �|− |η − ��| ≥ |�− ��|
2

> 0.

In particular we can exploit the usual trick: on the support of the kernel, the operator

L = i
ξ − η

|ξ − η|2 ·∇x

is well defined and L
�
e−ix(ξ−η)

�
= e−ix(ξ−η). It follows that

Kk,�
k�,��(ξ, η) =

�
e−ix(ξ−η) (L∗)2d+1

�
a(x, ξ) a(x, η)χ(x− k) χ(x− k�)

�
χ(η − ��)χ(ξ − �)dx
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from which we deduce (using also condition (9.14))

���Kk,�
k�,��(ξ, η)

��� ≤ Cd
1

|ξ − η|2d+1


 �

|α|≤2d+1

sup
x,ξ

|∂α
x a(x, ξ)|




2

χ(η − ��)χ(ξ − �)

≤ Cd

|a|22d+1

�k − k��2d+1 ��− ���2d+1
χ(η − ��)χ(ξ − �)

for any |�− ��| ≥ 4. But this estimate is clearly satisfied also if |�− ��| ≤ 4, as one sees directly

from the expression of Kk,�
k�,��(ξ, η) (without integrating by parts).

As the support of Kk,�
k�,��(ξ, η) in the variables η, ξ is bounded uniformly in �, ��, we get

sup
ξ

� ���Kk,�
k�,��(ξ, η)

��� dη = sup
η

� ���Kk,�
k�,��(ξ, η)

��� dξ ≤≤ Cd

|a|22d+1

�k − k��2d+1 ��− ���2d+1
,

one concludes by Shur test that the first of (9.12) holds true. The second one is proved similarly,
and we skip the details.

9.5 An application

An immediate application of L2 continuity is the following: if a ∈ Sm, m > 0 is an elliptic
symbol, then we can construct a parametrix:

Op (b)Op (a) = 1+R, b ∈ S−m, R ∈ S−∞.

This implies in particular that, for any s ∈ R,

�u�s+m = �Op (b)Op (a)u−Ru�s+m ≤ Cs�Op (a)u�s + �Ru�s+m

≤ Cs�Op (a)u�s + CN�u�−N

for any arbitrary N ∈ N.
The inequality means that any elliptic operator controls a number of derivatives equal to its

order.
Moreover, if u solves Op (a)u = f and f ∈ Hs0 , then we have

�u�s0+m ≤ C�f�s0

namely elliptic estimates.
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