9 [? continuity

In this section we prove that pseudodifferential operators are bounded in Sobolev spaces. We
will first prove the theorem assuming that Op (a) has a symbol in the class SY; subsequently we
will state an improved version of the the theorem which requires the symbol a only to have a a
finite numbers of derivatives bounded.

In the course of the proof we will use some general results which are interesting by themselves,
and we prove them here.

9.1 Shur test
Let K(x,y) € L'(R? x R4, C). Define the linear operator with kernel K as

[Arul(z) = g K(z,y)u(y) dy.

We introduce
Ay =sup [ 1 ()] dy,

A2 i=sup [ 1K (z,0)]do.
y
Proposition 9.1 (Schur test). Vp € [1,+oc], Vu € LP(R?) we have

1—1 S
| Aullze < AN IAI <y lullze.

Proof. If p = oo the estimate is obvious. If p < oo, from Holder inequality we get

[ 1K@ alutidy = [ K)o )] dy

Lr

<(/ |K<x,y>|dy)1_‘l’ (/ |K<x,y>|u<y>|pdy)‘l’,

([ 1K aliutln)” < jazz, [ 1KG P

hence

It follows that

Al < [ ( Jaie >|dy) do <A1y, [ [ 1K) ut)Pdys

Changing the order of integration we obtain the result. O

9.2 Cotlar-Stein theorem

We start with some motivation. We have a linear operator T': X — X and we want to compute
[IT]|. In many cases it is possibile to decompose the operator in pieces T = . 7T; in such a
way that it is easier to compute the norm of the single pieces T;. However the gain in the
decomposition is lost if one estimates brutally with triangular inequality ||T|| < >°. ||T;||, except
in the case the norms ||7;|| enjoy decay properties.
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There are however better cases: to show them consider for the moment the case T: R® — R"

has a block diagonal structure
Ay

T =
Am

with A; a m; x m; matrix. Then we have

T = ZTi’ Ti = Hz Asz
i

where II; is the orthogonal projector on the i-th block; clearly
171 = max[|Aq].

The improvement is due to the fact that the decomposition is orthogonal:
T} T = (A1) TLAGTL = TG AGTGTL AT =0 Vi #£ j
thus
|Tz|?* = (Tx, Tz) = (T"Tx,2) = Y _(T;Tix,x)
0,J

=> (T Tyw,x) = |Tilliz||* < sup | T3 ]|
i i v

The crucial point is that T7T; = T;T; = 6;;. The idea is simply to replace this strong vanishing
requirement by a condition that ensures sufficient decay in |j — k.

Theorem 9.2 (Cotlar-Stein). Consider (A;) en a family of bounded operators on a Hilbert space
H. Assume that there exists M > 0 such that

w3 1A A2 S M s Y A5 <
J k j

Then defining

Sn=> 4

J<N
we have
ISv]l < M, VN eN. (9.1)

Before proving the theorem, we recall a preliminary result:
Lemma 9.3 (TT* lemma). Let A be a linear bounded operator on an Hilbert space H. Then
1A = A% = |4~ A1 = | AA"|1"/2 (9-2)
Proof. Take u € H with [Ju|| < 1. We have that
| Aul|? = (Au, Au)
= (A" Au, a)
< [ AT Al lu]®
< [[A*A]
< [AT(lAl
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We obtain that

IA]? < [ A" Al < A Al (9-3)
from which we also deduce
[A] < [|A™.
By substituting A with A* and using that (A*)* = A, we obtain the reverse inequality
A7 < [[AA*|| < | AJl[IA*]) (9.4)
which implies also ||A*|| < ||A||. Thus all the inequalities are actually equalities. O

Proof of Cotlar-Stein theorem. By the previous lemma applied to A; we get || A;|| = || A A;||*/? <
M which gives

1D Ayl < N
J<N
clearly this bound is rough since it depends on V.
To eliminate this dependence we use the “power trick”, which consists in writing the norm
of Sy as the norm of a power of S}y, Sy or SyS%. In particular

ISk SNl = lISn?
1(Sx SN2l = I(SxSn)* (S Sn)I = ISK S ll? = [ISwl*
and iterating we have that
I(SxSn)™ | = lISn ™, ¥meN

which we write as
ISnll = I(SxSw)™ V2™, VmeN.
But now we can exploit almost orthogonality:
(SNSN)™ = Z Af Ay, - A Ay,
J1,k1,e s gmskm

Now we estimate each term in the sum in two different ways: on one hand we have

HA;1 Akl T A;m,Ak'm S ||A.>jk1 Akl H e IlAf,,LAk'm N (9'5)
On the other hand we have
A5, Ak, -+ Af A, || < NTAG AR AR LAk, AG T A, (9.6)
Using min(a, b) < (ab)'/? for any a,b > 0, we get
I(SRS)™ < Y 1AL I 1AG, Ar 12 AR AL I Ak, AG T2 1AT, A, 2 A, 12
Kk
<MY AL A 2 N AR ALY Ak A 2D 1A, A, M2
jhkl j2 jm km
S MQm Z 1 S M2mN
J1
hence we get that
ISn || = [[(SxSn)™|[V/*™ < MNY?™, ¥m eN.
Taking m > 1 gives the thesis. O
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We state now a useful corollary of Cotlar-Stein theorem

Corollary 9.4. With the same assumptions of Cotlar-Stein theorem, the series S = Zj A;
converges in the strong operator topology, namely

Yu € H, 3 lim Syu =: Su. (9.7)
N—o0

Proof. Take first u € Ran A}, namely Jy € H such that u = Ajy. We show that {Syu}y is a
Cauchy sequence. Indeed

N N
ISn = Sndull = 1| Y A A5l < D 1A AL NIyl < sup > AL Ayl — o

J=N j j=N'

as N, N’ — oo by the assumptions of Cotlar-Stein. Therefore ) j Aju converges to an element
of H.
Denote by U = UiyRan A}. The previous argument shows that Zj Aju converges for any

u € U. We show now that it converges for any element u € U. Again we show that {Syu}y is a
Cauchy sequence. Take € > 0 arbitrary and y € U so that ||z — y|| < e. Then using the previous
step and the conclusion of Cotlar-Stein (9.1) we get

[(Sn = Snull < [[(Snv = Sn)yll + [[Sn(z = )| + |58 (z — )|
< Ce+2Me

Finally take x € U". Indeed take z € U. In particular (z, Afy) = 0 for any k£ € N and
y € H. It follows that = € kerAy, for any k. Thus 3, Ajz = 0.
O

Remark 9.5. Remark that it is not true that Sy converges to S in the operator norm: as
an example take H = (*(N), A; = II; = (-,e;)e; the projection on the j-th element of the
basis. Then 11y = b5k, so the assumptions of Cotlar-Stein are fulfilled. Indeed one has that
Syx = ngN IIjz converges to v Vx, but Sy does not converges to the identity in the operator
topology, as |1 — Sn|| =1 for any N.

9.3 A first result on boundedness on L2

We shall prove the following result:

Theorem 9.6. Let a € S°. Then Op (a) estends to a bounded operator from L? — L? with the
following estimate: there exist K € N and C > 0 (independent of a) such that

10p (@) ¢llz2 < Cp (@), Vo € L7

We assume that Theorem 9.6 holds true and announce immediately the continuity in Sobolev
spaces, which is an easy corollary.

Corollary 9.7. Let a € 8™, m € R. Then Op (a) extends to a bounded operator H®> — H*™™
with the estimate: Vs there exist Kg € N and Cy > 0 that

10p (@) lle-m < Cs 9 (@)l ms,  Vip € H.

Remark 9.8. In particular if the symbol has a positive order then Op (a) loses regularity, and
if the order is negative then Op (a) gains regularity.
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Proof. We know that (£)® € 8% Vs € R. Let (D)” = Op ({£)”). We know that

[llzs = 114€)" D2z = | (D) |2
Moreover (D)” is invertible with inverse (D)™ *® (it is a Fourier multiplier). Thus
10p (@) Y[l e = [ (D)""™ Op (a) Pllz2 = | (D)""™ Op (a) (D)~" (D)” || 2.

Now (D)*" "™ Op (a) (D)™ * has symbol (£)*™™ #a# (€)"° € 8Y, therefore by L? continuity theo-
rem

10p (@) ¢l ro-m < C plk, ((€)° ™ #a#t () ") I{D)* ¢l 2 < Cspi (@) (D)* 2.

Proof of Theorem 9.6 We split the proof into different cases.

(i) Case a € S~ 1. Then Op (a) has integral kernel

[ et

K(ZL', y) = (271')"

and one has
K (z,9)] < (2m)" / a(z,€)|dé < (2m)"C / (€)™ dé < oo

Therefore, by the dominated convergence theorem, K € C°(RY x R? R) is a bounded and
continuous function.
Tt can be easily verified that (z—y)*K (z,y) is the integral kernel of Op (i'a‘aga(a:, 5)), hence

|($ _ y)aK(l‘,y)‘ < ’(ZW)—n/ei(r—y)inA(a?a)(w,é‘)dg’

a —n— d§ e
< /|85 a(m,§)|d€ < O)a| l(a) /<§>n+1+|a < Cpg l(a) < 00.

Therefor we get off - diagonal decay :

—n—1
Ky < (o210

One concludes using Schur test, as sup,, [ |K(x,y)|dy = sup, [ |K(z,y)|dz < co.
(i1) Case a € 8™, m < 0. We observe that

10p (@) ul[7> = (Op (a) u, Op (a) u)z2 = (Op (a)" Op (a) u,u) 12 = (Op (a*#a) u, u) 2.

If m < —2H then a*#a € S C S~ Hence from point (i) we have that Op (a*#a) is
bounded L? — L? and

la(z, D)ullZ: < [[ull£2]Op (a*#a) ull 12 < C 7 (a*#a)|ulF= < C pi(a)?||ull

by symbolic calculus.
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Now we iterate. If m < —"T'H, we obtain

Opauljz < ||ul 2|l Op (¢ #a) ulf> < Coie(a)l|ul L=
——

e'SMCS*"T+1
We continue iterating in this way with —”T“, —"1—;1, -+ and find the estimate Ym < 0.

(iii) Case a € SY. Let M > 2supgzn |a(z, €)%, Then M — |a(x,£&)[? > M/2 > 0 and hence

the function
c(x, &) = /M —|a(z,£)]? € S°,
since f(t) = v/t is C™ for t > M/2 > 0. Now we have that
Op (¢)" Op (¢) = Op (c*#c)
and
CHe=cct+ ST

=ctc+8"

=|c?+871

=M —|af* +57!

=M—-a*a+S7!,
So we obtain
0 < [Op(c)ull72 = (Op (c)" Op (¢) u,u) = (Op (¢*#c) u,u) = ((Op (M)—Op (a*#a)+r_1(z, D))u,u),

and using item (i¢) we finally get

step (i7)
10D (a) ullZ> < Mllullzz + |lr-1(z, D)ulr2llull < (M + C)l|ull7-.

9.4 Calderdn - Vaillancourt theorem

In this section we improve Theorem 9.6 by showing that it is enough to require boundedness on
a finite number of derivatives of the symbol. In particular we will prove the following result:

Theorem 9.9 (Calderén - Vaillancourt). Assume that a € C?*H1 (R x R?) fulfills

|a|2g+1 == Z sup (|5§‘a(m,§)| + ’8?61(3:,5)’) < 00. (9.9)
la+B|<2d+1 TEER?
Then there exists a constant Cg > 0 such that
10p (@) llz(22) < Calalag1- (9.10)
Before proving Theorem 9.9 we need the following lemma:
Lemma 9.10. There exists x € C5°(R?) with supp x C [~2, 2]? such that

Yo x@—j) =1

JjEZ
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Proof. Take 6y € C§°(R), g >0, g =1 in [—1, 1], supp by C [-2, 2]. Put
0($):Zﬁo(cc—j), z eR.
JEL

Then 6 is periodic on Z, i.e. 8(x + k) = 0(x) Vk € Z, smooth, §(z) > 1 Vz (indeed, for any =z,
there exists j € Ns.t. z —j € [-1, 3]). Define

o = 1 5025

n=1
One checks that x fulfills the wanted properties. O
We prove now Theorem 9.9.

Proof of Theorem 9.9. 1t is sufficient to show that the operator
Aua) = [ e afar )ule) g

maps continuously L? — L2. Indeed Op (a) = A o F and the result follows by the continuity of
F on L2

The idea is to decompose the operator A in almost orthogonal packets, and then use Cotlar-
Stein to bound the norm.

We make a partition of the phase space R?? as following:

1= Z Xk,f(x7€)7 Xk,f(xvg) = X(:L‘—k) X(g_g)

0,keZd

where x is the function of Lemma 9.10. Define
[Ag eu](z) == /d e ax, &) xr.o(x, E)u(€)dE, Yu €S
R

First by Schur criterium we have

sup [ Ag,ell < Csup|a(z, €)], (9.11)

thanks to the fact that each x; ¢ has compact support.
Now we claim that

" Ca |a|§d+1
”Ak,é Ap el < (k — k,>2d+1 (- £,>2d+1
(9.12)
Ak Ay < —— Sl

<;Z€ o k/>2d+1 <£ o €/>2d+1

for all k, k', 0,0 € Z.
Since the square roots of (9.12) are summable, we apply Cotlar-Stein theorem 9.2 and get
that for any integer NV € N

1Y > Al < Calalaagaflullzz,  Vu e S(RY) (9.13)

[k|<N [¢|[<N

68



Then, denoting
Anu := Z Ak7gu, u e S(Rd),
|kl,|E|I<N

we have that
(Anu)(z) = (Au)(z)

by dominated convergence theorem, since 1 = %", , xx.¢(z,&). Hence by Fatou lemma
[Aul| = || lim Awu| <liminf|Ayul| < Cqla|2a+1]ull Lz, Vu € S(R?)
N—o00 N—o0

which by density of S(R?) into L? concludes the proof.
To prove (9.12) we note that

(A7,9)(€) = / eI (. 8) gl) da.
It follows that
(A A g)(€) = / K5 (€,m) g(m)dn

with integral kernel
Kfz’fw & mn) = /e‘”“"’)mxk,e(x, &) alx,n)xw o (x,n)de
= /e‘i”“‘")ma(% ) x(x = k) X(€ = ) x(@ = k') x(n = £')dz
We notice immediately that the kernel is zero if
|k —K|>4 (9.14)

because the supports of x(z — k) and x(z — k') are disjoints. So we restrict to |k — k'| < 4.
So we need to prove that the kernel has decay in |£ —¢/|. Remark immediately that the kernel
is zero also for
E—>1, In—l]=1

It follows that we can restrict to [ —£] < 1, |p — €| < 1. Now given ¢, ¢ with |¢ — ¢'| > 4, we
have the bound
6= 2]

E—nl > le—€1=lg—t—lg—£] > S >0
In particular we can exploit the usual trick: on the support of the kernel, the operator

. &—1n
[ =i—> "1
Te=np

is well defined and L (e_iz(g_")) = e~ @) Tt follows that

"V,

Ky (6m) = /e’i‘”“’”) (L7)** [a(fv, &) a(x,n) x(z — k) x(z - k’)] X(n =) x(§ = O)da
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from which we deduce (using also condition (9.14))

2

1
K| < Co—r [ 30 swploza(@. &)1 | xtn—£)x(€ -0
€=l lo|<2d+1 ¢

|al3d41
< C(d <k _ k/>2d+1 Z;_ €/>2d+1 X(U - Z/) X(g - K)

for any |¢ — ¢'| > 4. But this estimate is clearly satisfied also if |¢ — ¢'| < 4, as one sees directly
from the expression of K k,’i, (&,m) (without integrating by parts).

As the support of K 1’;772@' (&,m) in the variables 7, € is bounded uniformly in ¢, ¢, we get

ke ke |al3a11
! =S H <<
Slgp/ ‘K N (677])’ dn b1;1’1:)\/\ ’K N2 (é.an)‘ dg —-= Cd <k . k’>2d+1 <€ _ £,>2d+1’

one concludes by Shur test that the first of (9.12) holds true. The second one is proved similarly,
and we skip the details. O

9.5 An application

An immediate application of L? continuity is the following: if @ € S™, m > 0 is an elliptic
symbol, then we can construct a parametrix:

Op(b)Op(a) =1+ R, beS™, ReS™ ™.
This implies in particular that, for any s € R,

[wlls+m = [|Op (b) Op (@) u — Rul|s4m < Cs[|Op (a) ulls + [[Rulls+m
< Csl|Op (a) ulls + Cnllul| -~

for any arbitrary N € N.

The inequality means that any elliptic operator controls a number of derivatives equal to its
order.

Moreover, if u solves Op (a) u = f and f € H*° then we have

||u||80+m < CHf”So

namely elliptic estimates.

70



