7. Periodic Pseudodifferential Operators

In this chapter we present a systematic theory of periodic pseudodifferential
operators. In next chapters the pseudodifferential structure of periodic inte-
gral operators will be extensively used by constructing fast solvers for integral
equations.

From the point of view of the theory of pseudodifferential operators in R™
(see, e.g.,[KN65],[See69],[Hor85],[Tay81], [Tre82]), periodic pseudodifferential
operators present a rather special case of those on a submanifold of R? —
the unit circle. Unfortunately, the local theory using the manifold charts is
impractical. Due to Agranovich [Agr79],[Agr85],[Agr94], we have an equiv-
alent global definition of periodic pseudodifferential operators on the ba-
sis of Fourier series and the so called symbol function of the operator; see
also [Els85],[SW87],[McL91],[TV98],[Vai99],[ Tur00].

We do not assume any acquaintance of the reader with the theory of
pseudodifferential operators in R™. In the contrary, this chapter could be
used as a helpful bridge to more general and complicated theories.

7.1 Prolongation of a Function Defined on Z

Here we present some preliminaries that we will use analyzing definitions of
periodic pseudodifferential operators. Introduce the space S(R) of all C*°-
smooth functions which are rapidly decreasing at infinity: for a f € S(R)
we have

igglxkf(’)(wﬂ(oo Vk,le N ={0,1,2,...}.
The Fourier transform F and its inverse F~! are defined by
ENO=FO = [ ¥ @ €eB, fes®),
Fo@) =3@) = [ *tge)d  (@eB), geS®.
A fundamental fact is that both F and F~! are one-to-one mappings from

S(R) onto S(R), and F~1Ff=FF1f = f fora f € S(R). A proof can be
found e.g. in [Yos65].
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In Chapter 5 we introduced a function § € D(R) such that suppfd C

—%, %] and

Y 0z+k)=1 (z€R).

keZ

For z € [0, 1] only two terms of this series do not vanish, and we have
f(z)+0(z—-1)=1 (0<z<1).

Now we will use the Fourier transform of this function for interpolation pur-
poses. Denote ¢ = F6. Clearly 6 € S(R), therefore ¢ € S(R). It follows from
the properties of 6 that

1, k=0,

0, 0#£keZ. (7.1)

(k) = dox = {

Indeed,
o(k) = (FO)(k) = /R e~ 1272k 0(3) dy = ( /_ 01 n /0 1)0@) e~ k273 gy

1 1
= / [6(z — 1) +6(z)] e **™" dz = / e 272 dp = b .
0 0
Further, we prove that for any [ € N, there is a function ¢; € S(R) such that
eV (&) = Alpi(§)  (E€R). (7.2)

We use the notations

AYP(E) =p(E+1) —9(€), AP =9 -v(-1) ((€R),

and call to attention the formula of summation by parts,

> [Ap(k)x(k) = =Y $(k)Bx(k),

keZ keZ

which holds for all functions v, x : Z — C such that one of the two series
converges and ¥ (+N)x(£N — 1) = 0 as N — oo (then also the other series
converges).

Instead of (7.2), we prove an equivalent relation: there is a function ¢; €
S(R) such that F~lo®W = F~1A,00 ie.

/ 277 50 (¢) dt = / e Alp(6)df (zeR).
R R

Integrating by parts in the left hand side and using shifts in the right hand
side we rewrite the condition in the form
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(—i2m2)'p(z) = (™™ -1)'@u(z), <E€R
resulting to the formula

- 127z

¢i(z) = (é-_mz—_—l)le(m)-

Note that ¢; € S(R) and consequently also ¢; = F@; € S(R). Indeed, the

factor —i27z/(e~127% —1) is C™-smooth in a neighborhood of z = 0, and the

singularities at 0 # k € Z cannot influence since 6 is supported on [—%, 2].

We see that the ¢; € S(R) satisfying (7.2) exists and is unique.
Property (7.1) allows us to use the function ¢ for prolongation of functions
o : Z — C up to functions po : R — C setting

(po)(©) =D ok)p(t—k) (E€R). (7.3)

keZ

Clearly, (po)(k) = o(k) (k € Z), provided that the series in the right hand
converges (locally) uniformly.

Lemma 7.1.1. Let the function o : Z — C satisfy with an a € R the
inequalities

|Alo(k)| < qk*t (keZ, leN). (7.4)

Then po € C*°(R) and

{(d%)l(poxo' <dalP (€31, 1eN) 5)

where the constant c; is independent of the function o.

Proof. According to (7.2), the formal differentiation of (7.3) under the sum
yields

d 1
— ) (09)(&) = ) a(k)Appu(€ — k).
(%) @ S ot

Notice that Agpy (€ — k) = pi(€ —k+1) — (€ — k) = —Arpi(€ — k). Using
the summation by parts we rewrite

(i) @0)(€) = (-1} S o (B)Bei(é ~ k) = [0 )] u(c - ).

d€ kezZ keZ

Since ¢; € S(R), (7.4) implies the uniform convergence of the last series, as
well as the series (7.3) itself, and this justifies the formal differentiation. Thus
po € C*(R) and
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I(d;"ﬁ)l(pa)(g)’ <a) ke - k)

kez

s«:,[c,,,. Y Ele-HT+ Y E marda)| (62
kez jk—€|<1
[k—¢€|>1

where r > 0 is arbitrary (we fix it sufficiently large). Clearly, for |k — £| <
1, || > 1 we have 1 < k/|¢| < 2 which implies k*~ ~I < gle=ll|g|le—t We have
to prove that, with a sufficiently large r, also

S - KT < caulgo

kEZ:|k—€|>1

It is more convenient to prove an equivalent inequality

> KlEPlE-KT<csr (€121, r>|B1+1).  (7.6)

kEZ:|k—£|>1

If B > 0 we estimate k? < (|k — €| + |§2B < 28(k—¢f +|€P);if B <O
we estimate |¢|7? < 9-8 (I€ — k|78 + k~7), and this easily results to (7.6).
Indeed, in the case § > 0,

> ElePlE -k

kEZ: |k—€|>1
szﬂ[ DO T P e N |k—e|-'"]

kEZ: |k—E|>1 kEZ:[k—E|>1
S 2ﬁ[|§|_ﬂcr—ﬂ + Cr] < 2ﬁ(cr—ﬁ + Cr) (|§| > 1),

and in the case 8 < 0,

S Kl Pl -k <

kEZ:|k—£|>1
2'3'[ >, K-kl 3 je- kr’] <2 (e g +er).
k€EZ:|k—€|>1 k€Z: |k—¢|>1

O

7.2 Two Definitions of PPDO and Their Equivalence

Let us begin with the observation that any operator A € L(H*, H*) can be
represented in the form

(Au)(t) = ¥ o(t,n)a(n) €™,  o(t,n) = oa(t,n) = e_n(t)(Aen)(t)

nez
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where e, (t) = e"2"t | For u € H*, the series converges in H*. Indeed, using
the Fourier representation of u we find

(Au)(t) = (AD_d(n)en ) () = Y _ i(n)(Aen)(t)
nez nez
= z ﬁ(n) e~ in27rt(A en)(t) ein2mt — Z O'(t, n),&(n) ein2mt
neZ nez

The function o(¢t,n) (t € R, n € Z) is called the symbol of the operator A.
Clearly o(t,n) is 1-periodic in t.

Definition 7.2.1. A linear operator A defined by

(Au)(t) = ) o(t,n)i(n) €™ (7.7)

nez

is called periodic pseudodifferential operator (PPDO) of order < « if its
symbol a(t,n) is 1-periodic and C*°-smooth in t and satisfies the inequalities

(8) 2wt

Here the subindex n in Alo(¢,n) indicates that the differences are taken
with respect to the variable n. The set of all symbols satisfying (7.8) will be
denoted by X', and the set of all PPDOs of order < a will be denoted by
Op X* and Op(o) denotes the PPDO corresponding to o, i.e. A = Op(o)
is given by (7.7). We present also a second definition which occurs to be
equivalent to the first one.

<cpyn®*t  (teR, n€eZ, kleN). (7.8)

Definition 7.2.2. A linear operator A is called PPDO of order < a if its
symbol o(t,n) is the restriction to R x Z of a function o(t,£) which is C®-
smooth on R x R, I-periodic in t and satisfies the inequalities

o k p) l
‘(E) (a_g) "(t’f)‘ﬁ cra(L+[E)*™  (teR, (€R, kleN).
(7.9)

Theorem 7.2.1. Definitions 7.2.1 and 7.2.2 are equivalent.

Proof. If o(t,&) satisfies (7.9) then its restriction o(¢,n) satisfies (7.8) since

Al o(t,n) = ALo(t 5)’ (8 )l (¢, £)'£=n+d with an €€ (0,1).

Conversely, if o(t, n) satisfies (7.8) then, due to Lemma 7.1.1, its prolongation
(po)(t, &) satisfies (7.9). a
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Definitions 7.2.1 and 7.2.2 originate from [Agr79],[Agr85]. Also the equiv-
alence of the definitions is mentioned there. A general theory of pseudodif-
ferential operators in a region 2 C R" can be found e.g. in [H6r85], [Tay81]
or [Tre82]. Definition 7.2.1 is more convenient in some applications. On the
other hand, Definition 7.2.2 is closer to the definition of a pseudodifferential
operator in R" enabling a more straightforward transfer of many fundamental
results, e.g. concerning the symbol analysis of PPDOs, see Sections 7.4-7.8.

Let us shortly discuss first examples of PPDOs. Consider a differential
operator

(Au)(t) = Y a;(t)ul? (2)
j=0

with 1-periodic C*-smooth coefficients a;(t). We have

(Au)(t) = A i(n) €™ = " i(n) f: a;(t)(in2r)d ei?7t,
j=0

neZ neZ
m .
o(t,n) = Zaj(t)(27ri n)’.
=0

Condition (7.8) is fulfilled with a = m. Thus, a differential operator of order
m belongs to Op ™. Formally we may write A = o(t, D) where D = ;- %.
The notation A = o(t, D) is often used also for general operators defined by
(7.7).

As a second example, let us consider the integral operator

(Au)(t) = a(t) /0 k(t — s)u(s) ds (7.10)

where a(t) is a 1-periodic C"°-smooth function and « is a 1-periodic function
or distribution such that, with an a € R,

|At&(n)| < ¢ n®7? ez, ley). (7.11)
Using Theorem 5.5.1 we find that
1
(4u)(t) = 3 i(n)a(t) / K(t - 5) €2 ds = 3 a(t)i(n)i(n) €727,
0

nez nez
o(t,n) = a(t)k(n).

Due to (7.11), o(t, n) satisfies (7.8), and A € Op X'*. In Section 7.6 we will see
that a class of more general integral operators can be interpreted as PPDOs.
Exercises

Exercise 7.2.1. Extend the examples of PPDOs to integro-differential oper-
ators proving that A; € Op X% (j = 1,2) implies A; +A; € Op pmax(ar,a2)
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Exercise 7.2.2. Check that the I0s presented in Sections 5.6-5.10 are PP-
DOs. (You must check (7.11) for those I0s.)

7.3 Boundedness of a PPDO

We are ready to prove that any A € Op X* is bounded from H* to H*~ for
all A € R. This assertion does not need the condition (7.8) to a full extent, it
is sufficient if (7.8) holds only for [ = 0:

Theorem 7.3.1. Assume that

()

Then for the operator A defined by (7.7) we have A € L(H*, H*~%) for any
AeR

< cpn® (teR, n€Z, keNy). (7.12)

Proof. Using the Fourier expansions o(t,n) = Y, .5 6(m,n)e™?™ (n € Z)
we represent A in the form

(Au)(t) = Z o(t,n)a(n) ein2rt — Z a(m,n)a(n) ei(m+n)2nt

nez m,neZ
= Z [Z a(k — n,n)ﬁ(n)} eikemt
k€Z *neZ

Thus

|Au||r—a = {Z E2(A—a) 'Z o(k — n,n)ﬁ(n)lz}l/z.

keZ nez

Integrating by parts and using condition (7.12) we find that for m # 0

&(m n) = /1 cf(t n) e—im2mt gy 1 " aj(t ) —im2nt dt
) - 0 I - im27r 0 atr ,n e s
I&(m7n)| S Cr _m__rﬂa (m, n e Z) Vr € NO . (713)

The estimate of ||Au||x—a can be continued as follows:

o < o { S80S ralam] ]

kezZ nez

_ 1/2
= {SECNBBF] =il

keZ
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where the functions b and v are defined by their Fourier coefficients
b(n)=n"", 9(n)=nli(n)| (neZ).

The norm ||bv||»—o can be estimated with the help of Lemma 5.13.1 obtaining

lAul|x-a < cllbllmax(ir—alllvlr-a = cllbllmax(r-almllully - @ > 1)

with a constant ¢ = ¢(r, A, @, v). This proves the boundedness of A considered
as an operator from H* to H*~®. Note that the norm ||b||, is finite if = is
taken sufficiently large (r > p + %) 0

7.4 Asymptotic Expansion of the Symbol

Definition 7.4.1. Let 0 € Y%, 0; € Y% (j = 0,1,2,...), where ap >
ay >ag> ..., 05 = —00, and

N-1
o— Z oj € XN forall N e N (7.14)
=0

Then the series E;‘;o o; is called an asymptotic expansion of o ( we write

o~ Z;io o) , and og is called the principal symbol.
Notice that the series ) o; itself must not converge.

Lemma 7.4.1. Let 0; € X% (j = 0,1,2,...), a; = —oo monotonically.
Then there ezists a symbol 0 € X°° such that o ~ 3772 0.

Proof (outlines). We define o by the formula
o0
o(t,n) =Y _o(En)oj(t,n)  (tER, n€Z) (7.15)
Jj=0

where p € C*(R) satisfies p(§) = 0 for |¢] < 1/2 and ¢(§) =1 for |¢| > 1,
and €; > 0 are chosen so small that

(&) stmato

It is easy to check that such ¢; exist, the series (7.15) and the series

< 279p%H1 for k+1<j, teR, neZ.

which we obtain applying (%)’c A under the sum converge uniformly, and o
satisfies (7.14). 0
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Notice that o is non-uniquely defined by its asymptotic expansion ) o;.
Indeed, if 6 ~ )_ 0 then also 0 +0_o, ~ Y 0 With any 0_o, € 2~ where
2~ consists of symbols which satisfy

(8)ntm

Conversely, if o and & have the same asymptotic expansion then 06— € X' ~°,
Thus a symbol can be reconstructed from its asymptotic expansion with the
accuracy of an additive function of the class X' ~°.

To an asymptotic expansion o ~ Z;;’o o; of symbols , there corresponds
the asymptotic ezpansion A ~ > oo, A; of corresponding operators A =
Op(o), A; = Op(o;). Relation (7.14) implies that

<ckyn " (MEZ,teR, keNy) withanyr > 0.

N-1
A=Y AjeOpzer  (N=12,...)

j=0

(but nothing can be said about the smallness of this difference in operator
norms).

An operator A_,, with a symbol o_,, € X~ is infinitely smoothing (is
bounded from any H* to any H#, A\,u € R). It can be represented as the
integral operator

1
(A_oou)(t) =/0 a(t, s)u(s) ds

with the 1-biperiodic C*°-smooth kernel
a(t,s) = Z O—oo(t,n) €2 (t—3)
neZ

Thus, an asymptotic expansion of the symbol of a PPDO enables to recon-
struct the operator with the accuracy of an infinitely smoothing additive
operator.

Exercise 7.4.1. Present a detailed proof of Lemma 7.4.1.

7.5 Amplitudes

Amplitude is a natural extension of the concept of symbol and it is a useful
tool in the symbol analysis.

Definition 7.5.1. A function a(t,s,n) (t,s € R,n € Z) is called an ampli-
tude of order < a if it is C°°-smooth and 1-periodic with respect to t and s,
and



208 7. Periodic Pseudodifferential Operators
AN AN
— — | Ala(t,s,n
(1) () dhateiom

We write a € A% in this case.

SCj,k,z_’r_L_a_l (t,sE]R, ne€z, jkleN).
(7.16)

Using Lemma 7.1.1, such an amplitude can be extended up to a C*°-
smooth function a : Rx R x R = C which is 1-periodic with respect to ¢ and
s and satisfies

J Kk l
(562) (%) (b%) a(t,s,f)' < p (L+ED* (¢,s,6 €R, jk,l€N).
(7.17)

Conversely, if a satisfies (7.17) then its restriction to Rx R x Z satisfies (7.16).
For a € A“ we define the amplitude operator A = Op(a) by

(Au)(t) = /0 1 > af(t,s,n) e 2) y(s) ds. (7.18)

n€eZ

For a < —1, the kernel K(t,5) = ), za(t,s,n) ein27(t=5) js a continuous
function. For a > —1 and a smooth function u, (7.18) is to be interpreted as
a result of a formal integration by parts, being an abbreviation of

ein21r(t—.~3) ( o

1 q 1
(Au)(t):/0 Z W §> [a(t, s,n)u(s)] ds+/0 a(t,s,0)u(s) ds.

0#n€Z

Due to (7.16), the kernels

ein21r(t—s) ( o

p
— <p<
@rin) as> a(t,s,n), 0<p<q,

Kp,q(t,s) = Z

0#n€Z

are continuous for ¢ > a+ 1. A consequence of this interpretation is that the
order of summation and integration in (7.18) may be changed.

Clearly, symbols o(t,n) are the amplitudes which are independent of the
argument s, and A = Op(o) has the representation (7.18):

(Au)(t) = Z o(t,n)i(n) ein2mt _ Z o(t,n) ein2mt /1 u(s) eln2ms g
0

nez nez

1
_ / 3" o(t, n) €m2=9) y(5) ds.
0

nez

Here, for 0 € X* with a < —1 and u € H°, the change of the order of
integration and summation is legitimate. For @ > —1 and smooth u, again



7.5 Amplitudes 209

the formal integration by parts should be incorporated into understanding of
the representation.

Surprisingly, the sets Op 2'* and Op.A® coincide although X* C A*
properly.
Theorem 7.5.1. For every amplitude a € A there exists a unique symbol
o € X* of the same order such that Op(a) = Op(c), and o has the asymptotic
eTrpansions

o(t,n) ~Z%A%6§j)a(t,s,n) E (7.19)
J:O . sS=
a(t,§) ~ f: l(—a->j6ja(t s §)| (7.20)
, j=0 AN P et
where
19 0) 0T
— il 0) _ J) — - ]
O=5—a, O0=I, & g(a,, Iy forj>1.(7.21)

We precede some preliminaries to the proof. Denoting

j—1
€0 =1, D=T[E-D=¢¢-1...¢-1+1), j>1, (7.22)
1=0

we can represent

k

k
€W =3 o, =3 pY (cem
j=0

j=0

with (see Exercise 7.5.1)

w®_ 12\ 0 _ L yier -

called the Stirling numbers of the first and second kind, respectively. Com-
paring (7.21) and (7.22) we see that

k k
o =3 o0, o =3 P00, (7.29
=0

=0

Lemma 7.5.1 (Markov). For1<j< N-1,¢9 € C¥R), € € R, the
formula

1 . = ® 1 & J
58000 = Y B0 5P O + [ binme (e +nan (729

k=j 0
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holds true with

1 :
bj,n(n) = ﬁ(_N_—-—l—)'[Aé(E - 77)41\-[—1”5:0

where

_ _ 5—77, 5—7720,
(& 77)+—{0’ £—n<0.

Proof. Denote by S the shift operator, (Sy)(¢) = p(£ + 1). Then

J

Afso(e)=(5—f>fso(s)=z()( 1-I8lp(e) = 3 (-1~ '() (E+1).

1=0 =0

Applying the Taylor formula (0 <1< j),

=1 (k) ( e\ 7k 1 : N-1_(N)
o6+ = 3 o O+ gy [N Me+
N-1 1
=3 oM — )Y o™ (& +n) de
k=0
we obtain
j gy 1 ! j—1 -7 k k
w00 = 3 [0 (7)#lee
1 g j—l(j N—-1
—_ - l - (N .
ey [, R () e e v
Since
j 1 (k) .
j—1 k _ Adgk _ 3B, k=27,
; -1) ()z Algk|,_, {O,J er
! j—1 .7 N-1 j N-1
_ “1_ [ Aj _
> -1y (l)a—vm = [ale-n2] .,
this results to (7.25). 0

Formula (7.25) holds trivially also for j = 0. Notice that ,B((,k) = dok-
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Exercises

Exercise 7.5.1. Check that A¢0) = j¢U-1), j > 1. Using this establish the
formula (7.23) for the Stirling number ﬂj(-k) (0<j<k).

Exercise 7.5.2. For 1 < j < N — 1, prove that b; n(n) > 0 (0 < 7 < j).
Using this prove that there is an 7 € (0, j) such that

N-1
1 . 1
?Ajgo(g) = _S. ﬂj(.k) Fgo(")(ﬁ) ﬂJ(N) N M€ +n) (Markov formula).
! = !

Exercise 7.5.3. Prove that, for 1 < j < N — 1, there is an 5 € (0, N) such
that

N
1 1 1
ﬁcp(’)(ﬁ) = kX: ag-k) ﬁAkcp(é) + ag- )N' oM (€ +n) (Markov formula).

Proof (of Theorem 7.5.1). Let a € A“. The operator A = Op(a) is defined
by (7.18), and clearly A € L(H?, H®) where N 3 ¢ > a + 1. Consequently,
the symbol of A is well defined, unique and given by

O'(t 'I’L) —e m21rt(Ae )(t) —1n21rt/ Z a(t s, m) im2n(t—s) em27rs ds
meZ

where e,(t) = ei™®™*, Remembering the interpretation of (7.18), we may
change the order of summation and integration:

tn) Z/ a(t s, m) —i(m—n)2nrs dsel(m n)2nt

meZ

= Z da(t, m — n,m)el(m—m)2mt
meEZ

= Z ag(t,m,n + m)elm2"t
meZ

where ax(t,m,§) = fo (t,s,€)e” ™27 ds are the Fourier coefficients of
a(t, s, €) as the function of the second argument s; integration by parts and
(7.17) yield with any r > 0 the estimates

A\ [a\*
l(&) (a—g) &2(t’m’€)l < Cpgrm (1 4+ [€)*70. (7.26)
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There is a natural way to extend o(¢,n) from R x Z to R x R setting

o(t,8) = 3 taltm, € +m) e,

mezZ

By the Taylor formula,

N-1 1 a j )
az(t,m,§ + m) = Z ? (55) &2(t,m,£)m-’ + RN(tamaé) )
j=0 *°

m N
RN(t,m,f)':(N—i—li/(; (m—n)N“l(a%) az(t,m,€&+n)dn,

and it follows from (7.26) that

(%) () wweme)

im|
Cpl+N;r 7 N-1 ~I-N
< 14 — [4 4
< L [ gl V(1 g )N g

where “+” and “—" in | £ 7| correspond to m > 0 and m < 0 respectively.
It is easy to check that the following Peetre’s inequality holds true:

L+t <@+ DA+ YN for &m AeR

Since |n| < |m| in the integral above, we obtain with any » > 0

a\P/ 8\
(—) (—) RN(t,m,§)| < cpu e mTHEHHAN (1 L je)e=N | (7.97)

ot o€
Further,
S iy (t,m, E)md 627 = 8] 5 ay(t,m, ) €2 | = dla(t, s, €)
meZ meZ s=t s=t
Denoting ;
0st,6) = % () slatt.s,6)| _
A TN ’
we obtain

N

-1
a(t,&) - o;i(t, &) = Z Ry(t,m,¢§) eim2nt
0

j= meZ
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and by Leibniz rule,

(%)k(gz)l[oa,e -3 049

J=0

50) Zl(3) () oo

meZ

With the help of (7.27) we get the estimate

'(%)k(é%y[ (8- Z"f‘t )| < ceanta-+ g

for all t,£ € R, k,l € Ny, N € N. This means that
c-Y o;exN  (NeN. (7.28)
§=0

Due (7.17), o; € £*77 (j € N). Consequently ¢ € X¥* and o ~ Z]—O
The last is the asymptotic expansion (7.20). Further, denoting

)

- | I
55(t:6) = 7 4{00alt,5,6)|,
we prove that

N-1
Z(&j—dj) e yo—N (n €N).

=0

(7.29)

Together with (7.28) this implies o ~ Z —o 0; and the asymptotic expansion
(7.19). Due to (7.25),

N-1 N-1N-1 1
z AJ a(J)a t,s,&) = Z Z ﬂ(k) ( ) a(J)a(t s,&)
7=0 J j=0 k=j
() N
j
+ ZO/ bin () 80 () alt 5.6+ )y
Changing the order of summation and using (7.24) we see that
N-1N-1 N-1 k ok N-1 k
1/0 k) a(i 1/0
3 Zﬂ(k) ( ) o) = z_(_) g0 = Z—(—) ok
i=0 k=; — KI\o¢/ =™ < K1\ 5¢

Consequently,
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N-1

N-1 .
536 = 0st.0] = X [ i) [p00 a5, + )] _an

. 8=

j= j=1

Using (7.17) we now easily estimate

a\k/ 5\t Nl

'(52) (3_§> > [5j(ta £ - Uj(tyﬁ)]l <ce N1+ EDNT (Kl e N)
=0

and this means that (7.29) holds true. 0

A consequence of Theorems 7.3.1 and 7.5.1 is that:

a € A® implies Op(a) € L(H*, H*~*) for any A € R.

7.6 Asymptotic Expansion of Integral Operators

Consider an integral operator

1
(Au)(t) = /0 a(t, s)k(t — s)u(s) ds (7.30)

where k(t) is an 1-periodic function or distribution and a(t, s) is C*®°-smooth
1-biperiodic function.

Theorem 7.6.1. Assume that
|AY&()| < an®t (neZ, leN). (7.31)

Then the periodic integral operator A defined in (7.30) is a periodic pseudodif-
ferential operator of order < a, and its symbol has the asymptotic expansion

21 . .
a(t,n) ~ Y j—,Ag,f;(n) 8P af(t, s) . (7.32)
par 1 =

If k(n) is extended up to a C*-smooth function k(£), £ € R, satisfying

0\'. -
|(5¢) #@| <ati+le)™™  (€eR, 1eN), (7.9
then the extended symbol has the asymptotic expansion
201 . :
a(t,&) ~ ) ﬁn“’(o Ba(t,s)| _ (7.34)
]:0 . s=

(the definitions of 87 and 8\ are given in (7.21)).
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Proof. Representing &(t) = Y,z A(n) ™2™, we have

1
(Au)(t) = /0 a(t, s) Z #(n) e™2m(¢=3) y(s) ds.

nez

This is (7.18) with a(t, s,n) = a(t, s)k(n) which clearly satisfies (7.16). Thus
A € Op A%, and by Theorem 7.5.1, A € Op X'*. The asymptotic expansion
(7.19) immediately yields (7.32), and (7.20) yields (7.34). m]

In the case of (nonintegrable) distribution « and sufficiently smooth u,
we obtain an interpretation of the integral operator (7.30) as an amplitude
operator, cf. Section 7.5, the interpretation of (7.18).

According to (7.32), we have A — ZI-V:_OI Aj € Op X*~N where

(Aju)(2) = ]—a, () 3 amAiam)] €™, a(t) = 0Palt,s)| _
nez -
) (7.35)

Similarly, according to (7.34), we have A — Z;.Vz_ol Aj € Op XN where

(Aju)(t) = = aJ(t)Z ()i (n) €™ a;(t) = &la(t, s) (7.36)

neZ

We see that Z A iu is easily computable in both cases, and later this will
be exploited de31gn1ng numerical methods for periodic integral equations. Let
us discuss some examples in more details.

7.6.1 Operator (Au)(t) = [, a(t, s) log|sin(t — 3)|u(s) ds
We know the Fourier coefficients of k() = log|sin 7¢t|:
#(0) = ~log2, () = ~zln|"" (0 #n e 2).

Clearly (7.31) is fulfilled with a = —1. We introduce an extension £ € C*®(R)
such that £ (¢) = —1|¢|~! for |¢| > 1 and £9)(0) =0 (j > 1). Then

RO (&) = (1)1 Lj1)¢|F (sign(¢))!  for |¢] > 1,
&9 (n) = (=1)71 Lt n|~ "1 (sign(n))! (0 #n € Z).

Thus 4 — Z;V___Bl A; € Op 21N where

(4u)(t) = (=1)" 3a;(8) D (n)[n|™7 " (sign(n))’ e"2",
0#n€Z

a;(t) = &a(t, s)

s=t
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For j = 0, we have omitted the term (Agou)(t) := —(log2)ao(t)%(0) which
corresponds to K(0) = —log2. Since Aggp € Op X' ~°, it does not influence on
the order of the asymptotic approximation. Moreover, asymptotic approxi-
mations will be used only for u containing high frequencies, i.e. for u of the
form u = 3515, 4(n) ein?7t with a ¢ > 0.

7.6.2 Operator (Au)(t) = if, a(t,s) cot w(t — s)u(s)ds

As we know, the Fourier coefficients of the distribution k(t) = icotnt are
given by

-1, n<O0,
k(n) =sign(n)=¢ 0, n=0,
1, n>0.

Clearly (7.31) is fulfilled with a = 0. The extension &£ € C*°(R) can be
constructed so that #(¢) = —1for ¢ < —1, #(¢) = 1 for £ > 1 and #¥)(0) = 0

(j € Ng). Now
£ (n)=0 (neZ) forj>1.

This means that the asymptotic expansions (7.32) and (7.34) contain only one
term: o(t,s) ~ &(n)a(t,t). Respectively, A— Ay € Op X~ where (Aou)(t) =
a(t, t)(Hou)(2),

(Hou)(t) = Z i(n) sign ™2™t = i/o cot w(t — s)u(s) ds.

0#£n€eZ

Exercises

Exercise 7.6.1. Assume (7.31) and denote By = A — Z;-V:_ol A; where op-
erators A; are defined by (7.35). Prove that,

1
(Byu)(t) = / an(t, )k (t = s)u(s) ds
0
where ay is a C*°-smooth biperiodic function and
kn(t) = (€ 2™ -1)Vk(t), An(n)=AVR(n) (n€N).

Exercise 7.6.2. Present asymptotic expansions of the integral operator
(7.30) with &(t) = sin®(xt) log|sin(t)|.

Exercise 7.6.3. Present asymptotic expansions of the operator (7.30) with
k(t) = 1/ sin® t, cf. Section 5.10.
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7.7 The Symbol of Dual and Adjoint Operators

For A € L(H*, H#), the dual operator A' € L(H~*,H™*) and the adjoint
operator A* € L(H™*,H~*) are defined by relations

(Au,v) = (u, A'v) forall ue H*, ve H™#,
(Au, v)o = (u, A*)o forall ue H*, ve H™*,
Recall that for u, v € HO,

1
(u,v) = 3 d(r)o(-n) = /0 w(t)u(t) dt,

vt
(u,v)o = ) i(n)d(n) = (t)v(t) at.
V)o < n)v -/(; u\tjv

Theorem 7.7.1. If A € OpX“ then A’ € OpX*, A* € Op X%, and the
following asymptotic expansions hold true:

1 iy 2 1../0Y
O'Ar(t, n) ~ Z _—'at(J)A-La'A(t, —n), O'A/(t,f) ~ Z —'atj (a—) UA(t, —f),
j:oj' j=o-7' ¢

©° N i . i_____
oaeltm) ~ D TP NTAE, 0wt~ Y 10l (o) Tat)

j=0 j=0"Y"

Proof. For u, v € C°(R), we have
(Au,v) = /I(Au)(t)v(t) dt
0
1/ p1
= /0 ( /0 Za(t,n) ein2m(t=3) 4 (s) ds)v(t) dt

nez
= /: u(s) (/01 éa(t,n) ein2m(t—3) (1) dt) ds.
We see that
(A'v)(s) = /01 Z o(t,n) e (=9 y(t) dt,
nez

or changing the roles of ¢ and s,

(A'v)(t) = /0 Z o(s,n)e™?m(5=t) y(s) ds

neZ

1
=/ Za(s, —n) e"27(t=3) 4 (s5) ds.
0

neZ
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Clearly, a(t,s,n) = o(s,—n) is an amplitude of class A%, and we obtained
that A’ = Op(a) (cf. (7.18)). Now all assertions of the theorem concerning
A’ immediately follow from Theorem 7.5.1. For A* the proof is similar. O

Exercise 7.7.1. Present the proof of Theorem 7.7.1 for A*.

7.8 The Symbol of the Composition of PPDOs

It occurs that the composition (product) of two PPDOs is again a PPDO.
Thus the set of all PPDOs occurs to be not only a vector space but also an
algebra.

Theorem 7.8.1. Let A € OpX* and B € Op XA. Then BA € Op Xo*5,
and its symbol has the asymptotic expansions

oo

onatn) ~ 3 5 [atostm]oPoaten, (737
X170\ -
OUCEIW [(55) o5 (t,f)] Bioa(t,€):; (7.38)

recall that 0; = ﬁ%, Bt(j) = n{;g(at — UI). Moreover, BA — AB €
Op ZotB-1,

Proof. We have (cf. first lines of the proof of Theorem 7.3.1)

(Au)(t) = ) 6a(m,n)i(n)e'(m+m2rt,

m,nez

Applying the operator B to this representation and using

Bemyn = 0p(t,m +n)el(m+mint

we obtain

(BA’U,) (t) = Z OB (t, m + n)&A (m, n),&(n) ei(m+n)21rt
m,neZ

= Z [Z oB(t,m + n)é 4(m,n) ™™ | i(n) "2t

neZ "“meZ

This means that

opa(t,n) = Z oB(t,m + n)é 4(m,n) e™?nt (teR, neZ).
meZ
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Using the extended symbols o4(t,£), op(t,&), we define extended symbol
opa(t, §) by
opa(t,§) = z oB(t, & + m)da(m,&)e™t,
mezZ

The last series as well as the series below converge locally uniformly since
o4 € Op X2, op € Op X8 imply the inequalities

!
’(%) 4(m, &) < crm (1 +|€))> with any r > 0, (7.39)
AN A
() (5) o(t0)] < coatt +1E0", (7.40)
Using the Taylor formula
N-11 75\ .
sa(te+m) =Y. (6—5) o5(t,E)md + R (t,€,m),
=0

m N
Rn(t.&m) = ey [ m=n" () ontig +mian,

we rewrite op(t, €) in the form
1 2\’ A i im2nt
oeat,€) = 3 5 |(5¢) o5(6.9)] X oatm, gt e
j=0 J: 5 meEZ

* Z RN(t,‘f:m)&A(m,é‘) eim2mt

mezZ

N-1

Here

S Gam, md 6™ = 0] 3 54, €)™ = Bora(1,6).
meZ meZ
So we have obtained
N-1

OBA (t7 £) - Z

j=0

= Z Ry(t,&,m)é4(m,§) eim2mt ,

mez

%[(%)jag(t, g)]a{aA(t,f)

and to prove (7.38) and op4 € X¥**?, we have to show that

a\¥ra\
—_ — R (t, 5’ m)a. (m’ €) eim27|'t
’(c‘%) (ae) ,,,ZGZ N 4

< ecpan (1 + [g)xrA-i=N

(7.41)
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for all t,¢6 € R, k,l € Ny, N € N. Estimates (7.39) and (7.40) allow to
differentiate the series in (7.41) under the sum. By the Leibniz rule,

%050 Z G (@) meem
(3
It follows from (7.40) that (cf. the proof of (7.27))

() (3e) e

Together with (7.39) we now get (7.41). Hence 0p4 € X**# and (7.38) holds
true. To prove (7.37) it suffices to show that for any N € N, the difference

l—q
) & a(m, €)(2mim)F—P eim2mt

< cpg NmPIHITAN (1 4 |g])A N1,

g%[AédB(t,ﬁ)] o aa(t,€) - g%l(%)jag(t,g)]a{m(t,g) (7.42)

belongs to X*+tB8—N_ This can be done in a similar way as we established
(7.29) in the proof of Theorem 7.5.1. The details are left to reader as an
exercise.

Finally, the asymptotic expansions of op4(t,£) and o4p(t,£) have the
same principal term op(t,€&)oa(t,€). Therefore opa—ap = 0Ba — 0aB €
Yot+B-1 and BA — AB € Op Xo+8-1, O

Exercises

Exercise 7.8.1. Prove that, under conditions of Theorem 7.8.1, the function
defined in (7.42) belongs to X*+t8-N,

Exercise 7.8.2. Prove the following difference version of the Taylor formula:

N-1
p(6+m) = Z Ahp(&)m“wRN(e, m) for{€R, meZ, p€CR),

!
(N -
RN(&,m)=<O, m=0,

-1
’(TV%T)v S (m-k-1)NDANp(E + k), m< -1
" k=m

1),Z<m MW DANpE+k-1), m>1,
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Notice that in case m > 1 we have

(m—k)-V =0 for k=m,m—1,...,max{l,m — N + 2}
and consequently Ry(§,m) =0for1<m <N -1.
Hints. Transform Ry (&,7) with the help of partial summations

m

S w(k)Ap(k) = = 3 [Bv(k)|0(k) — $(0)p(1) + w(m)e(m + 1),
k=1 k=1

S B Ae(k) = = 3 [B0(0)]0(k) + $(~1)p(0) - $(m ~ 1o(m)

k=m k=m

where m > 1 in the first formula and m < —1 in the second one. Notice
also that

Zu/)(m - k) = —Aml,/)(m - k),
Am(m — k)Y =l(m - k)¢, 1> 1.

Exercise 7.8.3. Present a direct proof of asymptotic expansion (7.37) on
the basis of the difference version of the Taylor formula (Exercise 7.8.2).

7.9 Pseudolocality

For a differential operator A, supp(Au) C supp u. For PPDOs this is not true
in general, but a similar result holds for the singular supports. The singular
support of u € Dj, singsuppu, is defined as the complement of the maximal
open set in R where u is C*°-smooth. For instance, Z is the singular support
of the function u = log|sin 7t|.

Theorem 7.9.1. For any u € Di(R) and A € Op X* of an arbitrary order
a €R,

sing supp (Au) C singsupp u. (7.43)

Proof. Let A € Op X'*. First we prove (7.43) for u € H? with N3¢ > a+1.
We represent

(Au)(t) = z o(t,n)i(n) ™™ = Z o(t,n) / 1 u(s) e~in2ms g gin2nt
0

nez nez

=o(t,00a(0) + Y =

0#£n€Z

= o(t,0)a(0) +/ Z (27r1n ein2m(t—s) u(Q)(s) ds

/ u(q) (8) e—in2ms ds ein27rt

(27r1 n)?



