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October 2009 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1.: Hydrogenic atom in a magnetic field

Let us consider an atom composed by a nucleus of charge −Ze and one electron. Indicating
with L and S the orbital and spin angular momentum, the Hamiltonian of the electron
in a magnetic field B = (0, 0, B) can be written as:

H = H0 + ζ(r)L · S +
µB

h̄
B(Lz + 2Sz),

where H0 is the Hamiltonian in absence of spin-orbit coupling (the second term) and in
zero magnetic field (the third term). Here µB is the Bohr magneton and ζ(r) is a radial
function independent from the angular and spin variables.

1. Indicate with |n, l, s, j, mj〉 the eigenstates of H0, L2 and S2 with total angular
momentum (orbital plus spin) J2 and Jz equal to h̄2j(j + 1) and h̄mj respectively.
n is the main quantum number and l and s label the orbital and spin angular
momentum. Are |n, l, s, j, mj〉 eigenstates of H when B = 0 and why?

2. Indicate with |n, l, s, ml, ms〉 the eigenstates of H0, with orbital L2, Lz, and spin S2

and Sz angular momentum equal to h̄2l(l+1), h̄ml, h̄2s(s+1), and h̄ms, respectively.
Show that when the spin-orbit term can be neglected, |n, l, s, ml, ms〉 are eigenstates
of H .

3. Use now perturbation theory for the general case of an electron in a p state (l = 1).
The six states |n, l, s, ml, ms〉 with l = 1, ml = 0,±1, s = 1/2, ms = ±1/2 are
degenerate eigenstates of H0. Write the matrix elements of H between these six
states.

4. Diagonalize the matrix obtained at point [3.] and plot the scaled eigenvalues E ′ =
E/h̄2ζn,1 as a function of x = µBB/h̄2ζn,1, where 〈n, 1, 1/2, ml, ms|ζ(r)|n, 1, 1/2, m′

l, m
′

s〉 =
ζn,1δml,m

′

l
δms,m′

s
.

5. (Optional) Repeat points [3.] and [4.] for a d electron (l = 2).
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Figure 1: Four-site spin cluster before (left panel) and after (right panel) the deformation.

Problem 2.: Spin-lattice coupling in a spin cluster

Consider the four-site square cluster in the left panel of Fig. 1. At each site there is a
spin S = 1/2, labeled from 1 to 4 in the figure. The spins are coupled among each other
by antiferromagnetic exchange couplings according to the bonds shown in the figure. For
instance, spin 1 is coupled to spin 2 by the term J1 S1 ·S2 and to spin 3 by J2 S1 ·S3, with
both J1 and J2 positive.

1. Calculate the spectrum of the cluster, namely all eigenvalues, as function of J2/J1

[Hints: Identify proper quantum numbers, i.e. total spin etc.., and re-write the
Hamiltonian in terms of them.];

2. Discuss qualitatively the low temperature behavior of the entropy and magnetic
susceptibility as function of J2/J1.

Now suppose that the cluster can deform in two possible ways: either the square
changes into a rectangle, deformation q1, or sites 1 and 3 move up while 2 and 4 down,
deformation q2. The elastic energy cost of the deformation is

K =
K

2

(

q2

1
+ q2

2

)

. (1)

Assume that, without deformation, J1 = J2 = J > 0, while, after it, the exchange
constants change as in the right panel of Fig. 1, with

Jx = J

(

1 +
g√
3

q1 +
g

3
q2

)

,

Jy = J

(

1 − g√
3

q1 +
g

3
q2

)

,

J2 = J
(

1 − 2g

3
q2

)

.
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3. Including the elastic cost Eq. (1), calculate the ground state energy of the cluster
E(q1, q2) and find the minimum with respect to the classical variables q1 and q2.
[Hints: The perturbation preserves total spin, so its effect is to split and couple
among each other states with the same total spin.]
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Problem 3.: Two hydrogen atoms at large distance

Consider two hydrogen atoms placed at a sufficiently large distance, for example 10
Angstrom, an order of magnitude larger than the equilibrium H-H distance in the H2

molecule. Assume each proton to give rise to only one bound state electron level, i.e.
focus just on the hydrogenoic 1s orbitals, of binding energy E0 (in real H, E0 = 13.6 eV).
Assume next that an electron bound to one proton can “hop” to the other proton bound
state with a hopping energy −t, very small because of the large distance. Finally, assume
that if a single proton bound state is occasionally occupied by two opposite spin electrons,
their mutual repulsion will reduce the total energy of the two electrons from −2 E0 to
−2 E0 + U .

1. Find the total number of two-electron states and classify them according to the total
spin quantum number.

2. Calculate eigenstates and eigenvalues as function of U and t.

3. Calculate the probability in the ground state to find zero, one or two electrons on a
single proton.

4. (Optional) Because the hopping t will decay exponentially with the H-H distance,
this treatment would predict an exponential interaction of the two atoms at large
distance. This is well known to be wrong, and the true interaction decays as a power
law (nothing to do with the Coulomb interaction of the nuclei, though). Explain
why, and identify the crucial missing ingredient in the above model.
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Problem 4.: One-dimensional bound state

One electron moves in one dimension and it is confined to the right half-space (x > 0)
where it feels a potential energy V(x). The Schrödinger equation reads:

−d2Ψ(x)

d2x
− |g|

x
Ψ(x) = EΨ(x)

1. What is the ground-state solution of the Schrödinger equation at large x?

2. What is the boundary condition at x = 0?

3. Find the ground-state wave function and its energy.

4. Calculate the expectation value 〈x〉 and 〈x2〉 in the ground state.

5. Guess the form of the first excited state, determine its energy, and check the or-
thogonality with respect to the ground state.

6. (Optional) Try to generalize the expression of the eigenvalues of all bound states.
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