A phase field approach to wetting and contact angle

1. Physical review

Liquid drops can adhere to vertical or inclined plates by exploiting surface
tension and frictional forces that can pin the contact line. These forces
give rise to a phenomenon , called contact angle hysteresis, that allows
the drop to adapt its contact angles and resist to gravity. In a two
dimensional geometry the drop is in equilibrium if:

pgA + oyCc0S 04 — oycosOr <0 (1)

where oy is the surface tension, p is the liquid
density, g is the usual gravity acceleration, A is the
area of the drop and 64 and 0g are the advancing
contact angle and the receding contact angle. The

maximum value Acir of A compatible with (1) is:
(o

Acrit —
PrY
Formula (2) prompts two remarks:

» necessary condition for adhesion is that
COS 04 # c0s Og (i.e. Young’s law is violated).

» Acrit IS proportional to (cos 8g — C0OS 0,).

2. Mathematical approach

The energy of an homogeneus liquid drop w In contact with an
homogeneus solid § and surrounded by a fluid is

E (w) = (osL — osv)|XsL| + ov|Z v +/ G(x)dVy + k

where |X g | is the measure of the solid-liquid interface, |X,y| is the
measure of the liquid-vapor interface, o 45 Is the surface tension on the AB
interface, G(x) stands for a generic potential related to an external force
field (gravity). Given a volume VYV > 0, the geometric capillarity problem is
to find the surface such that:

w* = argmin{ E(w)}.
jw|=V

3. The phase field approach

We are looking for ¢ (the phase function), which equals one on the region
occupied by the liquid. Given Q2 C R3, whose boundary 9s€ is the solid
S, a potential W(s) = a’s?(1 — s)? (with a > 0 to be specified later) and
a continuous function o : [0, +00) — R we define

E.(¢) = /Q (ewcmz + %W(qﬁ) + ch(x)) dx +

We can extend E_ in L' in the following way:

_ [ E(¢) if¢p € H(Q,R)
Eo) = { oo  otherwise in L’
Now, following Modica [2], if we consider

S 1
o) =mt{a(s)+2 [ VW b o= [ VW)
then E,. I'-converges to

_ 2¢o|21yv| + 6(1)|XZsL| + 6(0)|Zsv|+
Eo(9) = | + Jo P(X)G(x)dx if € BV(£2,{0,1})

o0 otherwise in L1

o (p)dHn_1(x)
dS2

and if ¢* is a family of minimizers of E., and if ¢* is its limit in L', then ¢*
IS @ minimizer for Ep.
If we choose o (x) := Nx (with this choice —Ze% = N on 9sf?) and set:

a
; &(0) = 0,

2CO — — 0oLy,

s s 1
5(1) = inf {Ns+23 + -

s>0 3 2 6
we can conclude that E, I'-converges to the capillarity energy.
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4. The solution scheme

The Euler-Lagrange equation for the phase field model is (for sake of
simplicity we set G =0and a = 1):
—eAp+1p(1 —p)(1 —2¢) + A =0 inQ

86 N
on = "2 on Jsi2

where X is a lagrangian multiplier for the constraint [, ¢ = V(& + dt).
We transform (4) into a parabolic PDE generated by a gradient flow:

5
Or = eAP — 2915(1 — ¢)(1 —2¢) — A.

The solution willbe lim (7, -).

T—+00

5. The quasi-static evolutionary model for hysteresis

The capillarity energy can’t describe the hysteresis effect: a necessary

condition for stationarity is that Young's law is valid. So it's necessary to

introduce a dissipative term able to capture the frictional effects.

For a quasi-static evolutionary drop a new functional can be written:
w*(t + ot) = argmin {E(w,t + 0t) + D(w,w™(1))}

|w|=V(t+41)

where w*(t) is the configuration at time ¢

D(wq,w2) = pu|0swi A Oswa| is the dissipation

(AA B)=(A\B)U(B\ A)

p > 01s a parameter giving the dissipated energy per unit area.

From a mathematical point of view this description is equivalent to

consider a bi-component solid surface; so we are going to solve:

¢ (t + ot) = arg min {Ee(qb, t+ ot), subjectto / o =V(t+ 5t)}
Q

% N, on 83522
¢€ - {NR on 8352%
where 952 and 952 are e-approximations of the wet and the dry part of
the solid, and N4 (Ng) are the Neumann boundary condition associated
with the advancing (receding) angle.

6. Numerical results

We checked the validity of the proposed model by determing the critical
volume (that is the maximum value over which a drop is no longer in
equilibirum) of water drops placed on differently treated vertical glasses,
comparing and checking them against experiments by Shanahan [3]. The
graph below shows the good agreement.

Figure: On the left a vertical slice and a 3-D picture of a phase field drop on a tilted plate;
on the right the plot of the obtained results.
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