

A phase field approach to wetting and contact angle hysteresis

Antonio DeSimone and Livio Fedeli, SISSA - International School for Advanced Studies, Trieste, Italy

SCUOLA INTERNAZIONALE
SUPERIORE di STUDI AVANZATI
International School
for Advanced Studies
via Beirut 2-4 • 34014 Trieste • ITALY
T +39 040 3767 11 • F +39 040 3767 528
www.sissa.it

1. Physical review

Liquid drops can adhere to vertical or inclined plates by exploiting surface tension and frictional forces that can pin the contact line. These forces give rise to a phenomenon, called **contact angle hysteresis**, that allows the drop to adapt its contact angles and resist to gravity. In a two dimensional geometry the drop is in equilibrium if:

$$\rho g \mathbf{A} + \sigma_{LV} \cos \theta_A - \sigma_{LV} \cos \theta_R \leq 0 \quad (1)$$

where σ_{LV} is the surface tension, ρ is the liquid density, \mathbf{g} is the usual gravity acceleration, \mathbf{A} is the area of the drop and θ_A and θ_R are the *advancing contact angle* and the *receding contact angle*. The maximum value \mathbf{A}_{crit} of \mathbf{A} compatible with (1) is:

$$\mathbf{A}_{crit} = \frac{\sigma_{LV}}{\rho g} (\cos \theta_R - \cos \theta_A) \quad (2)$$

Formula (2) prompts two remarks:

- necessary condition for adhesion is that $\cos \theta_A \neq \cos \theta_R$ (i.e. Young's law is violated).
- \mathbf{A}_{crit} is proportional to $(\cos \theta_R - \cos \theta_A)$.

2. Mathematical approach

The energy of an homogeneous liquid drop ω in contact with an homogeneous solid \mathbf{S} and surrounded by a fluid is

$$E(\omega) = (\sigma_{SL} - \sigma_{SV}) |\Sigma_{SL}| + \sigma_{LV} |\Sigma_{LV}| + \int_{\omega} \mathbf{G}(\mathbf{x}) d\mathcal{V}_{\mathbf{x}} + \mathbf{k}$$

where $|\Sigma_{SL}|$ is the measure of the solid-liquid interface, $|\Sigma_{LV}|$ is the measure of the liquid-vapor interface, σ_{AB} is the surface tension on the AB interface, $\mathbf{G}(\mathbf{x})$ stands for a generic potential related to an external force field (gravity). Given a volume $\mathcal{V} > 0$, the geometric **capillarity problem** is to find the surface such that:

$$\omega^* = \underset{|\omega|=\mathcal{V}}{\operatorname{argmin}} \{E(\omega)\}.$$

3. The phase field approach

We are looking for ϕ (the *phase function*), which equals one on the region occupied by the liquid. Given $\Omega \subset \mathbb{R}^3$, whose boundary $\partial_S \Omega$ is the solid \mathbf{S} , a potential $W(s) = a^2 s^2 (1 - s)^2$ (with $a > 0$ to be specified later) and a continuous function $\sigma : [0, +\infty) \rightarrow \mathbb{R}$ we define

$$E_{\epsilon}(\phi) = \int_{\Omega} \left(\epsilon |\nabla \phi|^2 + \frac{1}{\epsilon} W(\phi) + \phi \mathbf{G}(\mathbf{x}) \right) d\mathbf{x} + \int_{\partial \Omega} \sigma(\tilde{\phi}) d\mathcal{H}_{n-1}(\mathbf{x})$$

We can extend E_{ϵ} in L^1 in the following way:

$$E_{\epsilon}(\phi) = \begin{cases} E_{\epsilon}(\phi) & \text{if } \phi \in H^1(\Omega, \mathbb{R}) \\ +\infty & \text{otherwise in } L^1 \end{cases} \quad (3)$$

Now, following Modica [2], if we consider

$$\hat{\sigma}(t) = \inf_{s \geq 0} \left\{ \sigma(s) + 2 \left| \int_t^s \sqrt{W(y)} dy \right| \right\}, \quad c_0 = \int_0^1 \sqrt{W(y)} dy$$

then E_{ϵ} Γ -converges to

$$\widetilde{E}_0(\phi) = \begin{cases} 2c_0 |\Sigma_{LV}| + \hat{\sigma}(1) |\Sigma_{SL}| + \hat{\sigma}(0) |\Sigma_{SV}| & \text{if } \phi \in BV(\Omega, \{0, 1\}) \\ +\infty & \text{otherwise in } L^1 \end{cases}$$

and if ϕ_{ϵ}^* is a family of minimizers of E_{ϵ} , and if ϕ^* is its limit in L^1 , then ϕ^* is a minimizer for \widetilde{E}_0 .

If we choose $\sigma(\mathbf{x}) := \mathbf{N} \mathbf{x}$ (with this choice $-2\epsilon \frac{\partial \phi}{\partial n} = \mathbf{N}$ on $\partial_S \Omega$) and set:

$$2c_0 = \frac{a}{3} = \sigma_{LV}, \quad \hat{\sigma}(0) = 0,$$

$$\hat{\sigma}(1) = \inf_{s \geq 0} \left\{ Ns + 2a \left(\frac{s^3}{3} - \frac{s^2}{2} + \frac{1}{6} \right) \right\} = \sigma_{SL} - \sigma_{SV}.$$

we can conclude that E_{ϵ} Γ -converges to the capillarity energy.

4. The solution scheme

The Euler-Lagrange equation for the phase field model is (for sake of simplicity we set $\mathbf{G} = \mathbf{0}$ and $a = 1$):

$$\begin{cases} -\epsilon \Delta \phi + \frac{1}{\epsilon} \phi(1 - \phi)(1 - 2\phi) + \lambda = 0 & \text{in } \Omega \\ \frac{\partial \phi}{\partial n} = -\frac{\mathbf{N}}{2\epsilon} & \text{on } \partial_S \Omega \end{cases} \quad (4)$$

where λ is a lagrangian multiplier for the constraint $\int_{\Omega} \phi = \mathcal{V}(t + \delta t)$. We transform (4) into a parabolic PDE generated by a gradient flow:

$$\phi_{\tau} = \epsilon \Delta \phi - \frac{1}{\epsilon} \phi(1 - \phi)(1 - 2\phi) - \lambda. \quad (5)$$

The solution will be $\lim_{\tau \rightarrow +\infty} \phi(\tau, \cdot)$.

5. The quasi-static evolutionary model for hysteresis

The capillarity energy can't describe the hysteresis effect: a necessary condition for stationarity is that Young's law is valid. So it's necessary to introduce a dissipative term able to capture the frictional effects.

For a quasi-static evolutionary drop a new functional can be written:

$$\omega^*(t + \delta t) = \underset{|\omega|=\mathcal{V}(t+\delta t)}{\operatorname{argmin}} \{E(\omega, t + \delta t) + D(\omega, \omega^*(t))\}$$

where $\omega^*(t)$ is the configuration at time t

$$D(\omega_1, \omega_2) = \mu |\partial_S \omega_1 \Delta \partial_S \omega_2|$$

$$(\mathbf{A} \Delta \mathbf{B}) = (\mathbf{A} \setminus \mathbf{B}) \cup (\mathbf{B} \setminus \mathbf{A})$$

$\mu > 0$ is a parameter giving the dissipated energy per unit area.

From a mathematical point of view this description is equivalent to consider a bi-component solid surface; so we are going to solve:

$$\phi_{\epsilon}^*(t + \delta t) = \underset{\phi^* \in \{N_A \text{ on } \partial_S \Omega_A^{\epsilon}, N_R \text{ on } \partial_S \Omega_R^{\epsilon}\}}{\operatorname{argmin}} \left\{ E_{\epsilon}(\phi, t + \delta t), \text{ subject to } \int_{\Omega} \phi = \mathcal{V}(t + \delta t) \right\}$$

where $\partial_S \Omega_R^{\epsilon}$ and $\partial_S \Omega_A^{\epsilon}$ are ϵ -approximations of the wet and the dry part of the solid, and N_A (N_R) are the Neumann boundary condition associated with the advancing (receding) angle.

6. Numerical results

We checked the validity of the proposed model by determining the critical volume (that is the maximum value over which a drop is no longer in equilibrium) of water drops placed on differently treated vertical glasses, comparing and checking them against experiments by Shanahan [3]. The graph below shows the good agreement.

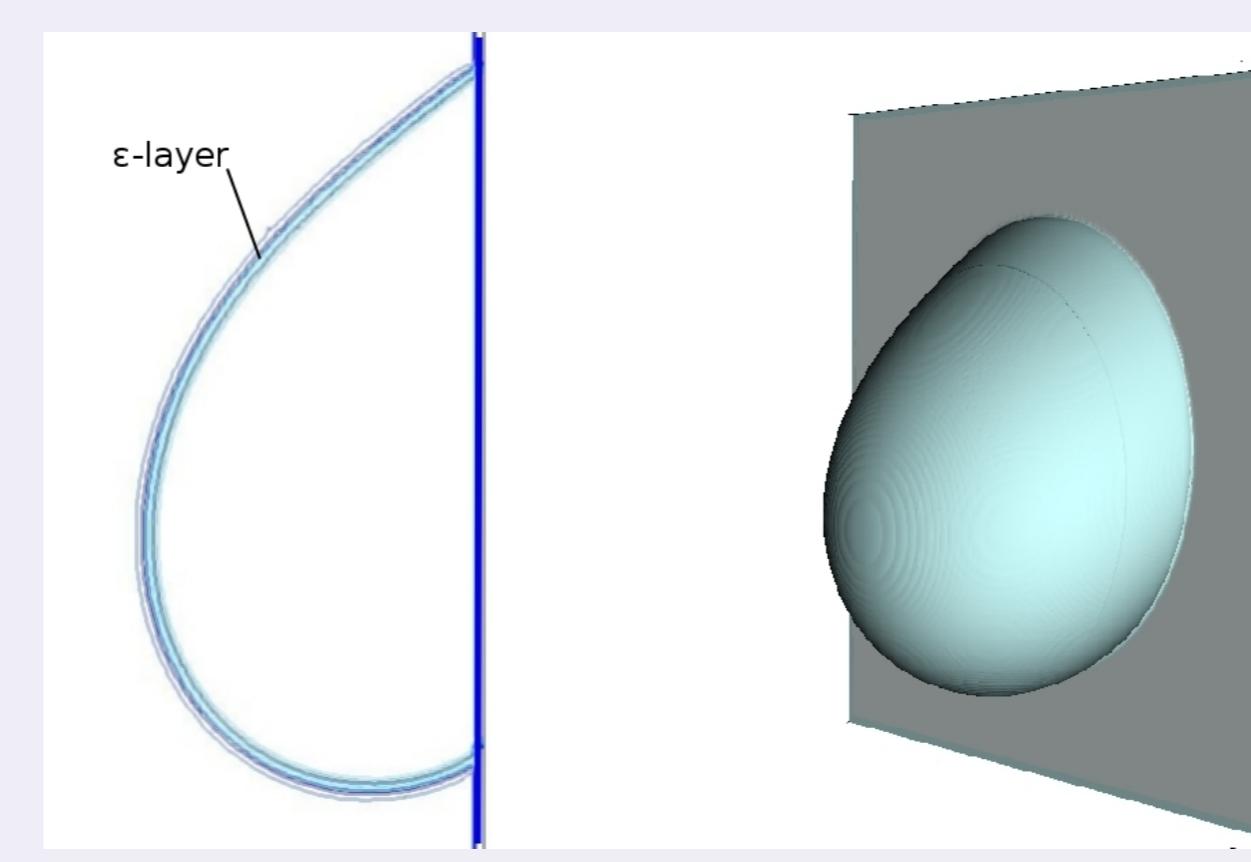


Figure: On the left a vertical slice and a 3-D picture of a phase field drop on a tilted plate; on the right the plot of the obtained results.

References

1. A. DeSimone, L. Fedeli, A. Turco, *A phase field approach to wetting and contact angle hysteresis phenomena*, Proceedings book of IUTAM-Symposium on Variational Concepts with Applications to the Mechanics of Materials, Springer-Verlag, in press
2. L. Modica, *Gradient Theory of phase transitions with boundary contact energy*, Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 497 (1987)
3. A. Carre and M.E.R. Shanahan, *Drop motion on an Inclined Plane and Evaluation of Hydrophobic Treatments to Glass*. J. Adhesion, 1995, Vol. 49, pp. 177-185

The third image is taken from the review *Wetting and Roughness*, David Quéré, Laboratoire de Physique et Mécanique des Milieux Hétérogènes, ESPCI, 75005, Paris