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1. Physical review

Liquid drops can adhere to vertical or inclined plates by exploiting surface
tension and frictional forces that can pin the contact line. These forces
give rise to a phenomenon , called contact angle hysteresis, that allows
the drop to adapt its contact angles and resist to gravity. In a two
dimensional geometry the drop is in equilibrium if:

ρgA + σLV cos θA − σLV cos θR ≤ 0 (1)
where σLV is the surface tension, ρ is the liquid
density, g is the usual gravity acceleration, A is the
area of the drop and θA and θR are the advancing
contact angle and the receding contact angle. The
maximum value Acrit of A compatible with (1) is:

Acrit =
σLV

ρg
(cos θR − cos θA) (2)

Formula (2) prompts two remarks:
I necessary condition for adhesion is that

cos θA 6= cos θR (i.e. Young’s law is violated).
I Acrit is proportional to (cos θR − cos θA).

2. Mathematical approach

The energy of an homogeneus liquid drop ω in contact with an
homogeneus solid S and surrounded by a fluid is

E (ω) = (σSL − σSV)|ΣSL|+ σLV |ΣLV |+
∫
ω

G(x)dVx + k

where |ΣSL| is the measure of the solid-liquid interface, |ΣLV | is the
measure of the liquid-vapor interface, σAB is the surface tension on the AB
interface, G(x) stands for a generic potential related to an external force
field (gravity). Given a volume V > 0, the geometric capillarity problem is
to find the surface such that:

ω∗ = argmin
|ω|=V

{E(ω)}.

3. The phase field approach

We are looking for φ (the phase function), which equals one on the region
occupied by the liquid. Given Ω ⊂ R3, whose boundary ∂SΩ is the solid
S, a potential W (s) = a2s2(1− s)2 (with a > 0 to be specified later) and
a continuous function σ : [0,+∞)→ R we define

Eε(φ) =

∫
Ω

(
ε|∇φ|2 +

1
ε

W (φ) + φG(x)

)
dx +

∫
∂Ω
σ(φ̃)dHn−1(x)

We can extend Eε in L1 in the following way:

Eε(φ) =

{
Eε(φ) ifφ ∈ H1(Ω,R)
+∞ otherwise in L1 (3)

Now, following Modica [2], if we consider

σ̂(t) = inf
s≥0

{
σ(s) + 2

∣∣∣∣∫ s

t

√
W (y)dy

∣∣∣∣ }, c0 =

∫ 1

0

√
W (y)dy

then Eε Γ-converges to

Ẽ0(φ) =


2c0|ΣLV |+ σ̂(1)|ΣSL|+ σ̂(0)|ΣSV |+
+
∫

Ωφ(x)G(x)dx ifφ ∈ BV (Ω, {0, 1})
+∞ otherwise in L1

and if φ∗ε is a family of minimizers of Eε, and if φ∗ is its limit in L1, then φ∗

is a minimizer for Ẽ0.
If we choose σ(x) := Nx (with this choice −2ε∂φ

∂n = N on ∂SΩ) and set:

2c0 =
a
3

= σLV , σ̂(0) = 0,

σ̂(1) = inf
s≥0

{
Ns + 2a

(
s3

3
−

s2

2
+

1
6

)}
= σSL − σSV .

we can conclude that Eε Γ-converges to the capillarity energy.

4. The solution scheme

The Euler-Lagrange equation for the phase field model is (for sake of
simplicity we set G = 0 and a = 1):{

−ε4φ + 1
ε
φ(1− φ)(1− 2φ) + λ = 0 in Ω

∂φ
∂n = −N

2ε on ∂SΩ
(4)

where λ is a lagrangian multiplier for the constraint
∫

Ωφ = V(t + δt).
We transform (4) into a parabolic PDE generated by a gradient flow:

φτ = ε4φ−
1
ε
φ(1− φ)(1− 2φ)− λ. (5)

The solution will be lim
τ→+∞

φ(τ, ·).

5. The quasi-static evolutionary model for hysteresis

The capillarity energy can’t describe the hysteresis effect: a necessary
condition for stationarity is that Young’s law is valid. So it’s necessary to
introduce a dissipative term able to capture the frictional effects.
For a quasi-static evolutionary drop a new functional can be written:

ω∗(t + δt) = argmin
|ω|=V(t+δt)

{E(ω, t + δt) + D(ω, ω∗(t))}

where ω∗(t) is the configuration at time t
D(ω1, ω2) = µ|∂Sω1 M ∂Sω2| is the dissipation
(A M B) = (A \ B) ∪ (B \ A)
µ > 0 is a parameter giving the dissipated energy per unit area.
From a mathematical point of view this description is equivalent to
consider a bi-component solid surface; so we are going to solve:

φ∗ε(t + δt) = arg min
{

Eε(φ, t + δt), subject to
∫

Ω
φ = V(t + δt)

}
φ∗ε =

{
NA on ∂SΩε

A
NR on ∂SΩε

R
where ∂SΩε

R and ∂SΩε
A are ε-approximations of the wet and the dry part of

the solid, and NA (NR) are the Neumann boundary condition associated
with the advancing (receding) angle.

6. Numerical results

We checked the validity of the proposed model by determing the critical
volume (that is the maximum value over which a drop is no longer in
equilibirum) of water drops placed on differently treated vertical glasses,
comparing and checking them against experiments by Shanahan [3]. The
graph below shows the good agreement.
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Figure: On the left a vertical slice and a 3-D picture of a phase field drop on a tilted plate;
on the right the plot of the obtained results.
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