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1. Вычисления в конформной теории при помощи
свободных полей

1.1. Фоковские модули

Рассмотрим голоморфное бозонное поле 𝜙(𝑧), с нормировкой 𝜙(𝑧)𝜙(𝑤) ∼ − log(𝑧 −
𝑤). Разложение этого поля имеет вид

𝜙(𝑧) = −𝑖

⎛⎝∑︁
𝑛̸=0

𝑎𝑛
𝑛𝑧𝑛

+ ̂︀𝑄+ 𝑎0 log 𝑧

⎞⎠
Тогда соотношения имеют вид [𝑎𝑛, 𝑎𝑚] = 𝑛𝛿𝑛+𝑚,0, [𝑎0, ̂︀𝑄] = 1. Тензор энергии им-
пульса определен по формуле

𝑇 (𝑧) = −1

2
:(𝜕𝜙(𝑧))2: +𝜆𝜕2𝜙(𝑧). (1.1)
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Центральный заряд равен 𝑐 = 1+12𝜆2. В терминах Лиувиллевской параметризации
𝜆 = (𝑏−1 + 𝑏)/

√
2. Можно написать явную формулу для генераторов 𝐿𝑛

𝐿𝑛 =
1

2

∑︁
𝑟+𝑠=𝑛

:𝑎𝑟𝑎𝑠: +𝑖𝜆(𝑛+ 1)𝑎𝑛 (1.2)

Вертексные операторы 𝒱𝛼 =:𝑒𝑖𝛼𝜙: являются примарными относительно этого 𝑇 (𝑧)
с конформной размерностью ∆𝛼 = 1

2𝛼(𝛼 + 2𝑖𝜆). Можно написать это в терминах
состояний: рассмотрим старший вектор |𝛼⟩ определенный условиями

𝑎𝑘|𝛼⟩ = 0 𝑘 > 0, 𝑎0|𝛼⟩ = 𝛼|𝛼⟩.

Тогда 𝐿0|𝛼⟩ = ∆𝛼|𝛼⟩. Отметим еще симметрию ∆𝛼 = ∆−2𝑖𝜆−𝛼. Эта симметрия нам
еще будет нужна.
Действие генераторов 𝑎𝑘, 𝑘 < 0 на вектор |𝛼⟩ порождает модуль. Этот модуль

имеет базис состоящий из векторов вида 𝑎−𝜇|𝛼⟩, 𝜇 = (𝜇1 ≥ 𝜇2 ≥ . . . ≥ 𝜇𝑘 > 0). Обыч-
но этот модуль называют фоковским и обозначают F𝛼. Формулы (1.2) определяют
действие алгебры Вирасоро на модуле F𝛼. При общем 𝛼 конформная размерность
∆𝛼 ̸= ∆𝑚,𝑛, значит модуль F𝛼 неприводим как модуль над алгеброй Вирасоро. При
специальных 𝛼 конечно ситуация интереснее.
На модуле F𝛼 тоже есть форма Шаповалова построенная по правилу сопряжения

операторов 𝑎†𝑛 = −𝑎−𝑛. Однако при этом сопряжении 𝐿𝑛 вообще говоря переходит
не в себя

𝐿†
𝑛 =

1

2

∑︁
𝑟+𝑠=−𝑛

:𝑎𝑟𝑎𝑠: −𝑖𝜆(𝑛+ 1)𝑎−𝑛 =
1

2

∑︁
𝑟+𝑠=−𝑛

:𝑎𝑟𝑎𝑠: +𝑖𝜆(−𝑛+ 1)𝑎−𝑛 − 2𝑖𝜆𝑎−𝑛.

В этом вычислении мы считали, что форма Шаповалова является комплексно сим-
метричной. Можно считать форму эрмитовой, но тогда надо считать 𝑖𝜆 веществен-
ным, т.е. 𝑐 < 1.
Если ввести другую алгебру Гейзенберга 𝑎̃𝑛 = −𝑎𝑛 + 𝛿𝑛,02𝑖𝜆, то

𝐿𝑛(𝑎)† =
1

2

∑︁
𝑟+𝑠=−𝑛

:𝑎̃𝑟𝑎̃𝑠: +𝑖𝜆(−𝑛+ 1)𝑎̃−𝑛 = 𝐿−𝑛(𝑎̃).

Таким образом получаем, что относительно Вирасоровоской формы Шаповалова
двойствеными модулями являются F𝛼 и F−2𝑖𝜆−𝛼.
Для полноты картины сопоставим еще параметр 𝛼 с (Лиувиллевской) параметри-

зацией через параметр 𝑃 . Имеем

1

2
𝛼(𝛼+ 2𝑖𝜆) = (

𝑏−1 + 𝑏

2
)2 − 𝑃 2, 𝜆 = (𝑏−1 + 𝑏)/

√
2.

Откуда

𝑃 =
−𝑖√

2
𝛼− 𝑏−1 + 𝑏

2
, 𝛼 = 𝑖

√
2𝑃 − 𝑖√

2
(𝑏−1 + 𝑏). (1.3)

В частности специальным значениям 𝑃 = 𝑃𝑚,𝑛 соответствуют

𝛼𝑚,𝑛 =
𝑖√
2

((𝑚− 1)𝑏−1 + (𝑛− 1)𝑏). (1.4)
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Задача 1.1. Найдите матрицу перехода от базиса 𝑎−𝜇|𝛼⟩ к базису 𝐿−𝜇|𝛼⟩ на вто-
ром уровне Фоковского модуля. Найдите ее определитель, при каких 𝛼 он зануля-

ется? Выведите из этого определитель формы Шаповалова на втором уровне в

модуле Верма 𝑉Δ𝛼 .

1.2. Конформные блоки: случай свободных полей

Вертексный оператор размерности ∆ для алгебры Вирасоро — это оператор ΦΔ(𝑧)
который удовлетворяет коммутационным соотношениям

[𝐿𝑛,Φ(𝑧)] = (𝑧𝑛+1𝜕𝑧 + ∆(𝑛+ 1)𝑧𝑛)ΦΔ(𝑧) (1.5)

Напомним, что эта формула получается из формулы со слиянием

𝑇 (𝑧)ΦΔ(𝑤) =
∆ΦΔ(𝑤)

(𝑧 − 𝑤)2
+

Φ′
Δ(𝑤)

(𝑧 − 𝑤)
+ reg

перестановкой контуров (если это непонятно, то полезно вспомнить!).
Поля 𝒱𝛼 являются примарными. Формально алгебраически это означает, что опе-

ратор 𝒱𝛼 действующий из Фоковского модуля F𝛽 в модуль F𝛽+𝛼 удовлетворяет со-
отношению (1.5).
Естественно хотеть написать формулу для конформных блоков используя бозони-

зацию. Например четырехточку полей 𝒱𝛼1 ,𝒱𝛼2 ,𝒱𝛼3 ,𝒱𝛼4 Вертексный оператор 𝒱𝛼2(𝑧)
бьет из модуля F𝛼1 в модуль F𝛼1+𝛼2 , следующий оператор 𝒱𝛼3(𝑧) бьет в модуль
F𝛼1+𝛼2+𝛼3 . Чтобы посчитать затем спаривание со старшим вектором модуля F𝛼4

необходимо, чтобы 𝛼1 +𝛼2 +𝛼3 = −𝛼4− 2𝑖𝜆. Таким образом при помощи свободных
полей легко вычислить четырехточечный конформный блок

ℱ(∆⃗,∆, 𝑐|𝑧) = ⟨𝒱𝛼1(0)𝒱𝛼2(𝑧)𝒱𝛼3(1)𝒱𝛼4(∞)⟩ = 𝑧𝛼1𝛼2(1 − 𝑧)𝛼2𝛼3 ,

где ∆𝑖 = ∆𝛼𝑖 , ∆ = ∆𝛼 и выполнено два дополнительных соотношения на параметры
конформного блока: 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = −2𝑖𝜆 𝛼 = 𝛼1 + 𝛼2 — два условия сохране-
ния заряда. Отметим, что здесь мы используем нормировку конформного блока в
которой ряд начинается не с 1, а с 𝑧Δ−Δ1−Δ2 , это более естественно если смотреть
на конформный блок как на матричный элемент. В литературе используются обе
нормировки.
Скажем еще по другому о том, что произошло. Конформный блок — объект уни-

версальный (во всяком случае для симметрии Вирасоро), его можно вычислять в
любой теории. Мы взяли теорию свободного поля (на самом деле не совсем из-за
удлинения на 𝜆 в формуле (1.2)) и вычислили конформный блок в случае выполне-
ния условия сохранения заряда. Но другие конформные блоки в этой теории вычис-
лить нельзя, они автоматически зануляются из-за нулевой моды 𝑎0. Можно сказать,
что зануляется структурная константа. Поэтому о самих блоках мы ничего не знаем.
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1.3. Вертексные операторы одетые скринингом

Хочется конечно избавится от условий сохранения заряда и научиться вычислять
конформные блоки в более общих ситуациях, за рамками условия сохранения заря-
да. Это можно сделать при помощи следующего приема принадлежащего Доценко и
Фатееву (следуя идее из работы Фейгина и Фукса). А именно, баланс заряда можно
достичь вставляя в конформный блок операторы вида 𝑆 =

∮︀
:𝑒𝑖𝛼𝜙(𝑧) : 𝑑𝑧. Для то-

го чтобы такая вставка была согласована с определением конформного блока надо
чтобы оператор 𝑆 коммутировал с алгебрай Вирасоро. Этого можно достичь:

[𝐿𝑛,

∮︁
:𝑒𝑖𝛼𝜙(𝑧): 𝑑𝑧] =

∮︁ (︂
𝑧𝑛+1 𝜕

𝜕𝑧
+ ∆𝛼(𝑛+ 1)𝑧𝑛

)︂
:𝑒𝑖𝛼𝜙(𝑧): 𝑑𝑧 =

=

∮︁
𝜕

𝜕𝑧

(︁
𝑧𝑛+1 :𝑒𝑖𝛼𝜙(𝑧):

)︁
𝑑𝑧 = 0, (1.6)

где предпоследний переход верен только если

1 = ∆𝛼 =
1

2
𝛼(2𝑖𝜆+ 𝛼).

Получается квадратное уравнение на 𝛼 которое имеет два решения:

𝛼+ = −𝑖
√

2𝑏, 𝛼− = −𝑖
√

2𝑏−1. (1.7)

Соответствующие операторы обозначаются 𝑆+ и 𝑆− и называются экранирующими
операторами или скринингами. Вертексные операторы 𝑆+(𝑥) = 𝑒𝑖𝛼+𝜙(𝑧) и 𝑆−(𝑥) =
𝑒𝑖𝛼−𝜙(𝑧) называются скрининговскими токами.
Теперь можно взять

ΦΔ(𝑧) =

∮︁
𝒱𝛼(𝑧)𝑆+(𝑥)𝑑𝑥 : F𝛽 → F𝛽+𝛼+𝛼+ . (1.8)

В коммутаторе [𝐿𝑛,ΦΔ] мы получим сумму двух слагамых — из коммутации с 𝒱𝛼(𝑧)
и из коммутатции с 𝑆+(𝑥). Однако второе слагаемое будет полной производной и
даст ноль после интегрирования. Таким образом мы проверили соотношения (1.5)
для той же размерности ∆ = ∆𝛼.
В этом рассуждении контур в формуле (1.8) мог быть любым замкнутым конту-

ром. Но смысл слова замкнутый на самом деле нетривиален. Пусть этот оператор
ΦΔ действует на модуль F𝛽 , тогда после нормального упорядочения получается ин-
теграл

∮︀
𝑥𝛽𝛼+(𝑥 − 𝑧)𝛼𝛼+𝑧𝛼𝛽𝐴(𝑥, 𝑧)𝑑𝑥, где 𝐴(𝑥, 𝑧) это ряд Лорана. При общих зна-

чениях 𝛼, 𝛽, 𝛼+ подинтегральное выражение имеет нетривиальные монодромии при
обходе вокруг точки 0 и точки 𝑧. Чтобы контур считался замкнутым надо чтобы
эта монодромия при обходе по контуру равнялась 1, иначе интеграл от полной про-
изводной — разность значений первообразной на концах — не будет равен нулю.
Можно еще это так объяснить: из-за монодромии интеграл ведется не по C−{0, 𝑧},
а некоторому накрытию, которое является более сложной римановой поверхностью,
и интеграл должен быть замкнут на ней. Более удобно говорить не про накрытие, а
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про гомологии с коэффициентым в локальной системе, это мы обсудим через какое-
то время.
Есть стандартный способ выбрать контур в формуле (1.8), и даже два. Первый

способо — это взять петлю Похгаммера охватывающую точки 0, 𝑧. Второй способ
это взять отрезок [0, 𝑧], этот контур не замкнутый, но так как значения первооб-
разной подинтегрального выражения на концах равны нулю, то интеграл от полной
производной занулится. Эти два контура на самом деле надо воспрнимать как пред-
ставителей гомологий дополнения C−{0, 𝑧} и относительных гомологий (C, {0, 𝑧}).
Мы не обсуждали вопрос сходимости интеграла, можно это все понимать так, что

мы вычисляем интеграл при тех параметрах (𝛼, 𝛽, 𝛼+) при которых он сходится и
далее аналитически продолжаем по ним.
Вернемся к формуле (1.8). Ясно что можно аналогично вставлять много скринин-

говских операторов, тогда мы получим формулу

ΦΔ =

∮︁
𝒱𝛼(𝑧)𝑆+(𝑥1) · · ·𝑆+(𝑥𝑟)𝑆−(𝑦1) · · ·𝑆−(𝑦𝑠)𝑑𝑥1 · · · 𝑑𝑦𝑠 (1.9)

Коммутационные соотношения с алгеброй Вирасоро будут правильным опять же
при условии, что не будет проблем с контуром. Немного сленгово это называется
одеванием оператора 𝒱𝛼(𝑧) при помощи скринингов.

1.4. Конформные блоки со вставленным скринингами

Вернемся к задаче вычисления конформного блока ℱ(∆⃗,∆, 𝑐|𝑧). Определим теперь
ΦΔ2 как оператор 𝒱𝛼2 одетый 𝑟2 скринингами 𝑆+ и 𝑠2 скринингами 𝑆−. Аналогично,
пусть ΦΔ3 — это оператор 𝒱𝛼3 одетый 𝑟3 скринингами 𝑆+ и 𝑠3 скринингами 𝑆−.
Тогда ΦΔ2 : F𝛼1 → F𝛼1+𝛼2+𝑟2𝛼++𝑠2𝛼− ,ΦΔ3 : F𝛼 → F𝛼+𝛼3+𝑟3𝛼++𝑠3𝛼− . Тогда условие

сохранение заряда имеет вид

𝛼 = 𝛼1 + 𝛼2 + 𝑟2𝛼+ + 𝑠2𝛼−, 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = −2𝑖𝜆− 𝑟𝛼+ − 𝑠𝛼−,

где 𝑟 = 𝑟2 + 𝑟3, 𝑠 = 𝑠2 + 𝑠3 суммарное числа вставленных плюсовых и минусовых
скринингов соответственно. Конформный блок имеет вид 𝑟+ 𝑠 кратного интеграла.
Разберем простейший пример. Пусть выполнено условие суммы зарядов 𝛼1 +𝛼2 +

𝛼3 + 𝛼4 = −2𝑖𝜆− 𝛼+, то есть конформный блок задается интегралом

ℱ(∆⃗,∆, 𝑐|𝑧) =

∮︁
⟨𝒱𝛼1(0)𝒱𝛼2(𝑧)𝒱𝛼3(1)𝒱𝛼4(∞)𝒱𝛼+(𝑥)⟩𝑑𝑥 =

= 𝑧𝛼1𝛼2(1 − 𝑧)𝛼2𝛼3

∮︁
𝑥𝛼1𝛼+(𝑧 − 𝑥)𝛼2𝛼+(1 − 𝑥)𝛼3𝛼+𝑑𝑥 (1.10)

Известно, что полученный интеграл является решением гипергеометрического урав-
нения. В качестве замкнутого контура обычно берется петля Похгаммера охваты-
вающая две особые точки из 4 (0, 𝑧, 1,∞). И эту петлю можно продеформировать в
отрезок соединяющий две особые точки. Обозначим через 𝐶1 отрезок соединяющий
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0, 𝑧 и через 𝐶2 отрезок соединяющий 1,∞. Тогда∮︁
𝐶1

𝑥𝐴(𝑥− 𝑧)𝐵(1 − 𝑥)𝐶𝑑𝑥 =

= 𝑧1+𝐴+𝐵 Γ(𝐴+ 1)Γ(𝐵 + 1)

Γ(𝐴+𝐵 + 2)
2𝐹1(−𝐶, 1 +𝐴, 2 +𝐴+𝐵|𝑧) (1.11)

∮︁
𝐶2

𝑥𝐴(𝑥− 𝑧)𝐵(1 − 𝑥)𝐶𝑑𝑥 =

=
Γ(−𝐴−𝐵 − 𝐶 − 1)Γ(𝐶 + 1)

Γ(−𝐴−𝐵)
2𝐹1(−𝐵,−𝐴−𝐵 − 𝐶 − 1,−𝐴−𝐵|𝑧) (1.12)

В случае обоих контуров ответ имеет вид ряда по 𝑧, т.е. как и должено быть для
конформного блока. Более того, понятно, что первый контур происходит из петли
вокруг точек 0, 𝑧, т.е. из одевания скринингом вертексного оператора 𝒱𝛼2 . А второй
контур происходит из одевания скринингом вертексного оператора 𝒱𝛼3 .
Это можно еще проверить сравнив лидирующие степени 𝑧. В нашей нормировке

она равна ∆𝛼 − ∆𝛼1 − ∆𝛼2 . Для контура 𝐶2 получается

∆𝛼 − ∆𝛼1 − ∆𝛼2 = 𝛼1𝛼2 (1.13)

откуда следует, что 𝛼 = 𝛼1 + 𝛼2. Для контура 𝐶1 уравнение имеет вид

∆𝛼 − ∆𝛼1 − ∆𝛼2 = 𝛼1𝛼2 + 1 + 𝛼1𝛼+ + 𝛼2𝛼+ (1.14)

откуда следует, что 𝛼 = 𝛼1 + 𝛼2 + 𝛼+.
При помощи интегралов подобного рода, в принципе можно вычислять все кон-

формные блоки для вырожденных полей 𝛼𝑚,𝑛. Другими словами, в этом случае
какое-то условие резонанса всегда выполнено, так как соответствующие параметры
равны

𝛼𝑚,𝑛 =
(1 −𝑚)𝛼− + (1 − 𝑛)𝛼+

2
. (1.15)

и 𝛼+ + 𝛼− = −2𝑖𝜆. Этот способ вычисления конформных блоков принадлежит
Доценко-Фатееву [12].

Задача 1.2. Расмотрим случай центрального заряда равного 𝑐 = 1
2 . Рассмотрим

конформную теорию с тремя примарными полями 𝐼 размерности 0, 𝜎 размерности
1
16 и 𝜓 размерности 1

2 , представляения порожденные этими полями мы возьмем

неприводимыми (отфакторизованным по сингулярным векторам). Эта теория на-

зывается (киральной) конформной теорией Изинга. Разберитесь какие сингуляр-

ные вектора есть у полей 𝐼, 𝜓, 𝜎. Найдите 4-точечный коррелятор четырех полей

𝜎 в этой теории. Сравните с имеющимися в литературе ответами для корреля-

торов в киральной конформной теории Изинга.
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2. Скрининги

2.1. Примеры

Пример 2.1 (𝜆 = 0). В этом случае центральный заряд равен 𝑐 = 1. Решая квад-
ратное уравнение, получаем 𝛼+ =

√
2, 𝛼− = −

√
2. Тогда имеем для токов

𝑆+(𝑧) = exp(𝑖
√

2𝜙(𝑧)), 𝑆−(𝑧) = exp(−𝑖
√

2𝜙(𝑧)). (2.1)

Если мы обозначим 𝑒(𝑧) = 𝑆+(𝑧), 𝑓(𝑧) = 𝑆−(𝑧), ℎ(𝑧) = 𝑖
√

2𝜕𝜙(𝑧), то эти токи
образуют алгебру ̂︀sl(2) на уровне 1.

Задача 2.1. Рассмотрим четырехточечтный конформный блок при 𝑐 = 1 в ко-

тором 𝛼 = 𝛼1 + 𝛼2 + 𝑛𝛼+,
∑︀
𝛼𝑖 + 𝑛𝛼+ = 0. Напишите для него интегральное

представление (в качестве области интегрирования можно взять например куб

0 ≤ 𝑥1, . . . , 𝑥𝑛 ≤ 𝑧). Сравните с интегралами возникающими в матричных мо-

делях, представьте этот интеграл в виде Ганкелевского детерминанта размера

𝑛× 𝑛.

Пример 2.2 (𝜆 = 𝑖/2). В этом случае 𝑐 = −2. Решая квадратное уравнение полу-
чаем 𝛼+ = 2, 𝛼− = −1. Тогда имеем для токов

𝑆+(𝑧) = exp(2𝑖𝜙(𝑧)), 𝑆−(𝑧) = exp(−𝑖𝜙(𝑧)).

Обозначим 𝜓*(𝑧) = exp(−𝑖𝜙(𝑧)), 𝜓(𝑧) = exp(𝑖𝜙(𝑧)). Мы получили представление
стандартной фермионной алгебры (или 𝑏− 𝑐 системы), в терминах компонент соот-
ношения можно записать как:

𝜓(𝑧) =
∑︁

𝑟∈Z+ 1
2

𝜓𝑟𝑧
−𝑟− 1

2 , 𝜓(𝑧) =
∑︁

𝑟∈Z+ 1
2

𝜓𝑟𝑧
−𝑟− 1

2 ,

{𝜓𝑟, 𝜓𝑠} = {𝜓*
𝑟 , 𝜓

*
𝑠} = 0, {𝜓𝑟, 𝜓

*
𝑠} = 𝛿𝑟+𝑠.

В терминах фермионов скринговские токи имеют вид 𝑆−(𝑧) = 𝜓*(𝑧), 𝑆+(𝑧) =
𝜓(𝑧)𝜕𝜓(𝑧).

Задача 2.2. Если вы этого никогда не делали, то докажите приведенные выше

утверждения про реализацию алгебры ̂︀sl(2) и фермионы в терминах вертексных

операторов.

2.2. Скрининги и сингулярные вектора

Другое (а исторически более раннее), применение скринингов — это построение син-
гулярных векторов. Действительно, если оператор

𝑆+ =

∮︁
:𝑒𝑖𝛼+𝜙(𝑥): 𝑑𝑥 (2.2)

действует из одного Фоковского модуля F𝛼 в другой F𝛼+𝛼+ , то тогда вектор 𝑆+|𝛼⟩ ∈
F𝛼+𝛼+ будет сингулярным вектором (так как 𝑆+ коммутирует с алгеброй Вирасоро).
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Для этого нужно чтобы контур в интеграле (2.2) замыкался и чтобы образ |𝛼⟩ был
не равен нулю. Это приводит к таким ограниченям:

𝛼𝛼+ ∈ Z, ∆𝛼+𝛼+ < ∆𝛼. (2.3)

Из первого условия вытекает, что 𝛼 = 𝑚
2 𝛼−,𝑚 ∈ Z, тогда из второго условия следует,

что 𝑚 > 1. Итого
𝛼+ 𝛼+ =

𝑚

2
𝛼− + 𝛼+ = 𝛼1−𝑚,−1 (2.4)

где мы использовали формулу (1.15). Значит, модуль со старшим весом ∆𝛼+𝛼+ =
∆𝑚−1,1 имеет сингулярный вектор. Мы доказали некую часть теоремы Каца-Фейгина-
Фукса.
Ясно, что если бы использовали скриннг 𝑆−, то доказали существование сингу-

лярного вектора в модуле со старшим весом ∆1,𝑛−1, 𝑛 ∈ Z>1.

Задача 2.3. Пусть 𝜆 = 0 то есть центральных заряд равен 1. Рассмотрим сум-

му фоковских модулей ⊕𝑛∈ZF𝑛
√
2. В предыдущем пункте мы уже говорили, что на

этом пространстве дейстует алгебра ̂︀sl(2) и нулевые компоненты 𝑒0, 𝑓0 являются
скринингами. т.е. коммутируют с алгеброй Вирасоро. Найдите сингулярные век-

тора в модулях F𝑛
√
2 (в каждом их них бесконечное число сингулярных векторов),

каким 𝛼𝑚,𝑛 они соответствуют?

Мы могли наложить другое неравенство т.е. положить

𝛼𝛼+ ∈ Z, ∆𝛼+𝛼+ > ∆𝛼. (2.5)

Тогда скрининг 𝑆+ будет действовать, но вектор 𝑆+|𝛼⟩ будет равен нулю. Однако,
так как 𝑆+ ̸= 0 (а это легко понять), то будут вектора которые переходят не в ноль,
а в случае общего положения модуль F𝛼+𝛼+ будет неприводимым и найдется вектор
в F𝛼 который переходит в |𝛼+𝛼+⟩. Этот вектор называется косингулярным1, он не
получается из старшего вектора |𝛼⟩ действием генераторов алгебры Вирасоро, хотя
получается действием генератов алгебры Гейнзеберга.
В любом случае, наличие такого вектор означает, что Фоковский модулю не изо-

морфен модулю Верма, откуда следует, что модуль Верма приводим. Решая соотно-
шения (2.5) получаем

𝛼 =
1 −𝑚

2
𝛼− = 𝛼1,𝑚, 𝑚 ∈ Z>0. (2.6)

Отметим, что при 𝛼 = 𝛼1,𝑚 и 𝛼 = 𝛼−1,−𝑚 размерности ∆𝛼 равны, но Фоковские
модули различны — один содержит сингулярный вектор (и на самом деле изоморфен
модулю Верма, если 𝜆 общий), другой содержит косингулярный вектор (и изомор-
фен контраградиентному модулю).

1этот вектор определен не однозначно, аккуратнее говорить, что есть сингулярный вектор в двой-
ственном пространстве
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2.3. Степень скрининга

Для того, чтобы построить сингулярные вектора в модулях Верма VΔ𝑚,𝑛,𝑐 можно
использовать операторы

𝑆
(𝑛)
+ =

∫︁
Γ𝑛

𝑛∏︁
𝑗=1

:𝑒𝑖𝛼+𝜙(𝑥𝑗): 𝑑𝑥𝑗 =

∫︁
Γ𝑛

:𝑒
∑︀

𝑗 𝑖𝛼+𝜙(𝑥𝑗):
𝑛∏︁

𝑗=1

∏︁
𝑗<𝑗′

(𝑥𝑗 − 𝑥𝑗′)
𝛼2
+𝑥

𝛼𝛼+

𝑗 𝑑𝑥𝑗 . (2.7)

Цикл Γ𝑛 должен быть подбран так чтобы интеграл имел смысл и не равнялся ну-
лю. Если бы Γ𝑛 было бы просто произведением 𝑛 окружностей из формулы (2.2) то

𝑆
(𝑛)
+ бы просто равнялось 𝑆𝑛

+, но в общем случае это не так. Получается любопыт-
ная ситуация: оператор 𝑆+ по формуле (2.2) не определен, но его «степень» (2.7)

определена. И сингулярный вектор в модуле VΔ𝑚,𝑛,𝑐 будет равен 𝑆
(𝑛)
+ |𝛼⟩.

Рассмотрим случай 𝑛 = 2, мы хотим определить 𝑆
(2)
+ . Т.е. мы хотим вычислить

гомологии локальной системы с весовой функцией 𝑓(𝑥1, 𝑥2) = 𝑥𝛽1𝑥
𝛽
2 (𝑥1 − 𝑥2)

𝛾 , где
𝛽 = 𝛼𝛼+, 𝛾 = 𝛼2

+. Интеграл имеет вид∫︁
Γ2

:𝑒𝑖𝛼+𝜙(𝑥1)+𝑖𝛼+𝜙(𝑥2): 𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2. (2.8)

Для случая 𝑛 = 2 можно указать (на самом деле единственно возможный) кон-
тур явно. Запишем экспоненту в виде 𝑒𝑖𝛼+𝜙(𝑥1)+𝑖𝛼+𝜙(𝑥2) =

∑︀
𝑘1,𝑘2∈Z𝐴𝑘1,𝑘2𝑥

𝑘1
1 𝑥

𝑘2
2 , где

𝐴𝑘1,𝑘2 операторы. Ясно, что 𝐴𝑘1,𝑘2 = 𝐴𝑘2,𝑘1 . Пусть 𝑥 = 𝑥1, 𝑦 = 𝑥2/𝑥1, тогда интеграл
может быть приведен к виду∫︁ ∑︁

𝑘1,𝑘2∈Z
𝐴𝑘1,𝑘2𝑦

𝑘2+𝛽(1 − 𝑦)𝛾𝑥2𝛽+𝛾+𝑘1+𝑘2+1𝑑𝑥𝑑𝑦. (2.9)

Интеграл распался в произведение двух, контур по 𝑦 это петля Похгаммера вокруг
0 и 1, контур по 𝑥 это окружность вокруг нуля. Для того, чтобы интеграл по 𝑥
сходился необходимо и достаточно, чтобы 2𝛽+𝛾+𝑘1 +𝑘2 + 1 = −1, т.е. число 2𝛽+𝛾
было целым и меньшим −1. Последнее неравенство мы на самом деле равносильно
нашему предположению 0 > ∆𝛼+2𝛼+ − ∆𝛼 = 2𝛼𝛼+ + 𝛼2

+ + 1. Значит, условием того,
что контур замыкается является условие 2𝛽 + 𝛾 ∈ Z.
Однако нам нужно, что бы наш интеграл не равнялся нулю, так как интеграл

симметричен по 𝑥1, 𝑥2 то надо чтобы группа 𝑆2 тривиально действовала на вторых
гомологиях локальной системы. Вычисляем вклад 𝐴𝑘1,𝑘2 в интеграл:∫︁

𝐴𝑘1,𝑘2𝑦
𝛽(1−𝑦)𝛾(𝑦𝑘1+𝑦𝑘2)𝑑𝑦 = 𝐴𝑘1,𝑘2

(︂
Γ(𝛽 + 𝑘1 + 1)Γ(𝛾 + 1)

Γ(𝛽 + 𝛾 + 𝑘1 + 2)
+

Γ(𝛽 + 𝑘2 + 1)Γ(𝛾 + 1)

Γ(𝛽 + 𝛾 + 𝑘2 + 2)

)︂
=

= 𝐴𝑘1,𝑘2Γ(𝛾 + 1)
𝜋/ sin(𝜋(𝛽 + 𝑘2 + 1)) + 𝜋/ sin(𝜋(𝛽 + 𝑘1 + 1))

Γ(𝛽 + 𝛾 + 𝑘2 + 2)Γ(𝛽 + 𝛾 + 𝑘1 + 2)
. (2.10)

Если 𝑘1−𝑘2 нечетное, то эта сумма равна нулю. Поэтому скрининг есть только если
2𝛼𝛼+ + 𝛼2

+ = −2𝑚. Тогда 𝛼 = 𝑚
2 𝛼− − 1

2𝛼+, 𝛼+ 2𝛼+ = 𝑚
2 𝛼− + 3

2𝛼+ = 𝛼1−𝑚,−2.
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3. Классические 𝑊 алгебры [9],[2]

3.1. Интегрируемые иерархии Гельфанда-Дикого

Мы будет считать, что все функции в этом параграфе это комплекснозначные глад-
кие периодические функции, интеграл

∫︀
. . . 𝑑𝑥 всегда понимается как интеграл по

периоду.
Рассмотрим скалярное уравнение Лакса

𝑑𝐿

𝑑𝑡
= [𝐴,𝐿].

Здесь 𝐿 = 𝐷𝑛+𝑢1𝐷
𝑛−1+ . . .+𝑢𝑛, 𝐴 =

∑︀𝑚
𝑖=0 𝑣𝑖𝐷

𝑖 два дифференциальных оператора,
𝐷 = 𝜕/𝜕𝑥. Левая часть уравнения Лакса является оператором степени 𝑛−1, правая
часть является оператором степени 𝑚 + 𝑛 − 1. Таким образом при данном 𝐿 мы
получаем 𝑚 уравнений на функции 𝑢𝑖. Красивый способ описывать все решения
использует псевдодифференциальные операторы.
Псевдодифференциальным оператором мы будем называть выражение вида 𝑋 =∑︀−∞
𝑖=𝑚 𝑥𝑖𝐷

𝑖. Такие операторы образуют алгебру, ясно что их можно складывать, но
на самом деле их можно умножать по формуле

𝐷𝑘𝑓 =
∞∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑓 (𝑖)𝐷𝑘−𝑖.

При 𝑘 < 0 справа стоит бесконечная сумма, но все равно это корректно определен-
ный псевдодифференциальный оператор.
Для псеводифференциального оператора 𝑋 мы будем обозначать

𝑋+ =

0∑︁
𝑖=𝑚

𝑥𝑖𝐷
𝑖, 𝑋− =

−∞∑︁
𝑖=−1

𝑥𝑖𝐷
𝑖, res𝑋 = 𝑥−1.

Лемма 3.1. Пусть 𝑋 =
∑︀−∞

𝑖=𝑚 𝑥𝑖𝐷
𝑖, и 𝑥𝑚 = 1. Тогда существует единственный

псевдодифференциальный оператор 𝑋−1 и единственный псевдодифференциальный

оператор 𝑋1/𝑚 начинающийся с 𝐷.

Лемма 3.2. Псевдодифференциальный оператор 𝑋 удовлетворяет [𝑋,𝐿] = 0, то-
гда и только тогда, когда существуют числа 𝑐𝑖 ∈ C такие, что

𝑋 =

∞∑︁
𝑖=𝑚

𝑐𝑖𝐿
𝑖/𝑛.

Лемма 3.3. а) Если [𝑋,𝐿] = 0, то [𝑋+, 𝐿] является дифференциальным операто-

ром порядка меньше 𝑛.
б) Если 𝑋 это функция (дифференциальный оператор нулевого порядка), то [𝑋+, 𝐿]
является дифференциальным оператором порядка меньше 𝑛.
в) Дифференциальный оператор 𝐴 порядка 𝑚 таков, что [𝐴,𝐿] имеет порядок

меньше 𝑛 тогда и только тогда, когда существуют числа 𝑎𝑘 ∈ C и функция 𝑓
такие, что 𝐴 =

∑︀∞
𝑖=𝑚 𝐿

𝑖/𝑛 + 𝑓 .
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Обозначим через 𝐴𝑚 = 𝐿
𝑚/𝑛
+ , через 𝑡𝑚 обозначим соответствующее время

𝑑𝐿

𝑑𝑡𝑚
= [𝐴𝑚, 𝐿]. (3.1)

Самое первое время 𝑡1 = 𝑥. Ясно, что нужно рассматривать только 𝑚 не кратные
𝑛.

Задача 3.1. (Если вы раньше этого не считали) Пусть 𝐿 = 𝐷2 + 𝑢, напишите
уравнение (3.1) для времени 𝑡 = 𝑡3. Должно получится уравнение КдФ.

Замечание 3.1. Легко видеть, что из уравнений (3.1) следует, что
𝑑

𝑑𝑡𝑚
𝑢1 = 0 для

любого 𝑚. Поэтому 𝑢1 является константой и обычно ее полагают равной нулю.

Предложение 3.1. a) Из уравнения (3.1) следует, что
𝑑

𝑑𝑡𝑚
𝐿𝑟/𝑘 = [𝐴𝑚, 𝐿

𝑟/𝑘].

б) Потоки 𝑡𝑚 и 𝑡𝑙 коммутируют, то есть
𝜕2𝐿

𝜕𝑡𝑚𝜕𝑡𝑘
=

𝜕2𝐿

𝜕𝑡𝑘𝜕𝑡𝑚
.

Система (иерархия) уравнений (3.1) называется системой Гельфанда-Дикого (дру-
гой термин — система 𝑛-KdV).
Определим функционал Адлера Tr(𝐴) =

∫︀
(res𝐴)𝑑𝑥.

Лемма 3.4. Функционал Адлера удовлетворяет свойству Tr[𝑋,𝑌 ] = 0.

По другому эта лемма значит, что res[𝑋,𝑌 ] это полная производная. Из этой
леммы и прошлого предложения следует

Предложение 3.2. Пусть ℎ𝑚 = res𝐿𝑚/𝑛. Тогда ℎ̄𝑚 =
∫︀
ℎ𝑚𝑑𝑥 является интегра-

лом движения, т.е.
𝑑

𝑑𝑡𝑚
ℎ𝑘 = 0.

Задача 3.2. Выберете из утверждений выше то, что вам кажется наиболее

непонятным и докажите (разберите по литературе) его.

3.2. Гамильтоновы структуры

Теперь будем рассматривать коэффициент 𝑢𝑖 дифференциального оператора 𝐿 как
координаты на некотором, бесконечномерном многообразии. В качестве функций на
этом многообразии мы будем рассматривать интегралы от локальных плотностей

𝑓 =

∫︁
𝑓(𝑥, 𝑢𝑖, 𝑢

′
𝑖, . . .)𝑑𝑥, (3.2)

где 𝑓 — это многочлен от 𝑥, 𝑢1,. . . , 𝑢𝑛 и их производных. Найдем вариацию этого
функционала, при сдвиге 𝑢𝑖 ↦→ 𝑢+ 𝜀𝑎𝑖

𝜕𝑎𝑓 =

∫︁ ∑︁
𝑖,𝑟

𝑎
(𝑟)
𝑖

𝜕𝑓

𝜕𝑢
(𝑟)
𝑖

𝑑𝑥 =

∫︁ ∑︁
𝑖,𝑟

𝑎𝑖(−𝐷)𝑟
𝜕𝑓

𝜕𝑢
(𝑟)
𝑖

𝑑𝑥 =

∫︁ ∑︁
𝑖

𝛿𝑓

𝛿𝑢𝑖
𝑎𝑖𝑑𝑥 = Tr

(︂
𝛿𝑓

𝛿𝐿
𝑎

)︂
,

(3.3)
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где 𝑎 =
∑︀𝑛

𝑖=1 𝑎𝑖𝐷
𝑛−𝑖, 𝛿𝑓/𝛿𝐿 =

∑︀𝑛
𝑖=1𝐷

𝑖−𝑛−1𝛿𝑓/𝛿𝑢𝑖.
Скобка Пуассона двух функций зависит только от их дифференциалов. Для двух

функций 𝑓 и 𝑔 (интегралов от локальных плотностей) пусть 𝑋 = 𝛿𝑓/𝛿𝐿, 𝑌 = 𝛿𝑔/𝛿𝐿
их дифференциалы. Тогда введем две скобки по формуле

{𝑓, 𝑔}1 = Tr
(︀
[𝑋,𝑌 ]𝐿

)︀
(3.4)

{𝑓, 𝑔}2 = Tr
(︁(︀
𝑋(𝐿𝑌 )+ − (𝑌 𝐿)+𝑋

)︀
𝐿
)︁

(3.5)

Эти скобки часто так и называются первая и вторая гамильтоновы структуры.
Иногда они называются по именам: первая Гарднера-Захарова-Фаддеева, вторая
Адлера-Гельфанда-Дикого (в случае 𝑛 = 2 Магри).

Задача 3.3. Проверьте кососимметричность скобки (3.5).

Замечание 3.2. Смысл первой скобки очень понятен. Пусть g = {
∑︀∞

𝑖=−1 𝑣𝑖𝐷
𝑖}

алгебра Ли псевдодифференциальных операторов с только отрицательными степе-
нями 𝐷 (такие операторы иногда называются Вольтерровскими). Пространство g
является двойственным к пространству g* = {

∑︀𝑚
𝑖=0 𝑣𝑖𝐷

𝑖} дифференциальных опе-
раторов. На пространстве g* есть скобка Костанта–Кириллова

{𝑓, 𝑔}(𝐿) = 𝐿([𝑑𝑓, 𝑑𝑔]).

Здесь 𝐿 ∈ g*, 𝑓, 𝑔 функции на g*, 𝑑𝑓, 𝑑𝑔 ∈ g их дифференциалы. Эта скобка Костанта-
Кириллова буквально и есть первая скобка (3.4), в частности мы доказали, что
первая скобка удовлетворят тождеству Якоби.
Смысл (или скорее контекст) для второй скобки мы обсудим на следующей лек-

ции.

Замечание 3.3. Сдвинем 𝐿 на константу 𝐿 ↦→ 𝐿+ 𝑐. Тогда

{𝑋,𝑌 }2,𝐿+𝑐 = Tr
(︁(︀
𝑋((𝐿+ 𝑐)𝑌 )+ − (𝑌 (𝐿+ 𝑐))+𝑋

)︀
(𝐿+ 𝑐)

)︁
=

= Tr
(︀
𝑋(𝐿𝑌 )+ − (𝑌 𝐿)+𝑋)𝐿

)︀
− 𝑐Tr

(︀
[𝑋,𝑌 ]𝐿

)︀
.

Здесь мы использовали, что 𝑋,𝑌 это интегральные (вольтеровские) операторы, по-
этому (𝑐𝑌 )+ = (𝑐𝑋)+ = 0 и Tr(𝑋(𝐿𝑌 )+) = Tr(𝑋𝐿𝑌 ). Из этого вычисления следует,
что первая и вторая скобка коммутируют, любая их линейная комбинация является
скобкой Пуассона.

Пример 3.1. Пусть 𝑛 = 1. Тогда первая и вторая скобки имеют вид:

{𝑓, 𝑔}1 = 0, {𝑓, 𝑔}2 =

∫︁
𝑑

𝑑𝑥

(︂
𝛿𝑓

𝛿𝑢

)︂
𝛿𝑔

𝛿𝑢
𝑑𝑥. (3.6)

Часто скобки пишут в виде

{𝑓, 𝑔} =

∫︁ ∫︁ ∑︁
𝑖,𝑗

𝛿𝑓

𝛿𝑢𝑖(𝑥)

𝛿𝑔

𝛿𝑢𝑗(𝑦)
Ω𝑖,𝑗𝑑𝑥𝑑𝑦, {𝑢𝑖(𝑥), 𝑢𝑗(𝑦)} = Ω𝑖,𝑗 . (3.7)
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В частности в примере выше вторая скобка имеет вид

{𝑢(𝑥), 𝑢(𝑦)}2 = 𝛿′(𝑥− 𝑦). (3.8)

Задача 3.4. Найдите первую и вторую скобку на пространстве операторов вида

𝐷2 + 𝑢.

Алгебра функций на пространстве операторов {𝐷𝑛 +𝑢1𝐷
𝑛−1 + . . .+𝑢𝑛} со второй

гамильтоновой структурой называется классической 𝑊 -алгеброй, построенной по
(аффинной) алгебре gl(𝑛).

Задача 3.5. Докажите, что скобка Пуассона в 𝑊 алгебре является (не более чем)

квадратичной по 𝑢𝑖.

Уравнения (3.1) являются Гамильтоновыми, причем относительно обеих скобок
3.4, 3.5. Перед тем как это доказывать докажем

Лемма 3.5. Пусть ℎ̄𝑚 = Tr𝐿𝑚/𝑛 (как выше). Тогда

𝛿

𝛿𝐿
ℎ̄𝑚 =

𝑚

𝑛

(︀
𝐿(𝑚−𝑛)/𝑛

)︀
−. (3.9)

Здесь правая часть (3.9) есть чисто интегральный оператор, можно выбросить в
нем все степени 𝐷−𝑛 и ниже чтобы было согласовано с формулой 𝛿𝑓/𝛿𝐿 выше.

Доказательство. Так как 𝐿𝑚/𝑛 = (𝐿1/𝑛)𝑚, то 𝛿𝐿𝑚/𝑛 =
∑︀𝑚−1

𝑖=0 (𝐿1/𝑛)𝑖𝛿𝐿1/𝑛(𝐿1/𝑛)𝑚−𝑖−1,
в частности аналогичная формула верна при 𝑚 = 𝑛. Тогда

𝛿ℎ̄𝑚 = 𝛿Tr
(︁𝑚−1∑︁

𝑖=0

(𝐿1/𝑛)𝑖𝛿𝐿1/𝑛(𝐿1/𝑛)𝑚−𝑖−1
)︁

= 𝑚Tr
(︁
𝐿(𝑚−1)/𝑛𝛿𝐿1/𝑛

)︁
=

=
𝑚

𝑛
Tr
(︁
𝐿(𝑚−𝑛)/𝑛

𝑛−1∑︁
𝑖=0

(𝐿1/𝑛)𝑖𝛿𝐿1/𝑛(𝐿1/𝑛)𝑛−𝑖−1
)︁

=
𝑚

𝑛
Tr
(︁
𝐿(𝑚−𝑛)/𝑛𝛿𝐿

)︁
,

что и требовалось доказать.

Теорема 3.1. а) Уравнения (3.1) являются Гамильтоновыми относительно скоб-

ки (3.4) и гамильтониана 𝑛
𝑚+𝑛 ℎ̄𝑚+𝑛.

б) Уравнения (3.1) являются Гамильтоновыми относительно скобки (3.5) и га-

мильтониана − 𝑛
𝑚 ℎ̄𝑚.

Доказательство. В формуле (3.1) слева стоят производные 𝑢𝑖(𝑦) (мы специально
взяли другую букву, не 𝑥, а 𝑦). Дифференциал этого функционала равен 𝛿𝑢𝑖(𝑦)/𝛿𝐿 =
𝐷𝑖−𝑛−1𝛿(𝑥− 𝑦) = 𝑌 .
Для Гамильтониана как в пункте а) имеем{︁ 𝑛

𝑚+ 𝑛
ℎ̄𝑚+𝑛, 𝑢𝑖(𝑦)

}︁
1

= Tr
(︁[︁(︀

𝐿𝑚/𝑛

)︀
−, 𝑌

]︁
𝐿
)︁

=

= −Tr
(︁[︁(︀

𝐿𝑚/𝑛

)︀
−, 𝐿

]︁
𝑌
)︁

= Tr
(︁[︁(︀

𝐿𝑚/𝑛

)︀
+
, 𝐿
]︁
𝑌
)︁
,
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что эквивалентно уравнению (3.1).
Для Гамильтониана как в пункте б) имеем{︁
− 𝑛

𝑚
ℎ̄𝑚, 𝑢𝑖(𝑦)

}︁
2

= −Tr
(︁(︁
𝐿
(︀(︀
𝐿(𝑚−𝑛)/𝑛

)︀
−𝐿
)︀
+
−
(︀
𝐿
(︀
𝐿(𝑚−𝑛)/𝑛

)︀
−
)︀
+
𝐿
)︁
𝑌
)︁

=

= −Tr
(︁(︁(︀

𝐿
(︀
𝐿(𝑚−𝑛)/𝑛

)︀
−
)︀
−𝐿− 𝐿

(︀(︀
𝐿(𝑚−𝑛)/𝑛

)︀
−𝐿
)︀
−

)︁
𝑌
)︁

=

= −Tr
(︁[︁(︀

𝐿𝑚/𝑛
)︀
−, 𝐿

]︁
𝑌
)︁

= Tr
(︁

[
(︀
𝐿𝑚/𝑛

)︀
+
, 𝐿]𝑌

)︁
что опять же эквивалентно уравнению (3.1).

Теорема 3.2 (Вильсон-Купершмидт). Умножение дифференциальных операторов

является Пуассоновым отображением относительно второй скобки Пуассона.

Более явно эта теорема означае следующее. Пусть дифференциальный оператор
𝐿 порядка 𝑛 представлен в виде произведения 𝐿 = 𝐿1𝐿2 порядков 𝑛1 и 𝑛2. Тогда
вторая Пуассонова скобка для 𝐿 является суммой скобок для 𝐿1 и 𝐿2

{𝑓, 𝑔}2 =

∫︁
res

(︂
𝐿

(︂
𝛿𝑓

𝛿𝐿
𝐿

)︂
+

−
(︂
𝐿
𝛿𝑓

𝛿𝐿

)︂
+

𝐿

)︂
𝛿𝑔

𝛿𝐿
𝑑𝑥

=

2∑︁
𝑖=1

∫︁
res

(︂
𝐿𝑖

(︂
𝛿𝑓

𝛿𝐿𝑖
𝐿𝑖

)︂
+

−
(︂
𝐿𝑖
𝛿𝑓

𝛿𝐿𝑖

)︂
+

𝐿𝑖

)︂
𝛿𝑔

𝛿𝐿𝑖
𝑑𝑥 (3.10)

Доказательство. Мы следуем [9, Prop. 4.1.5]. Имеем

𝛿𝑓 = Tr

(︂
𝛿𝑓

𝛿𝐿
𝐿

)︂
= Tr

(︂
𝐿2
𝛿𝑓

𝛿𝐿
𝛿𝐿1 +

𝛿𝑓

𝛿𝐿
𝐿1𝛿𝐿2

)︂
,

откуда 𝛿𝑓
𝛿𝐿1

=
(︁
𝐿2

𝛿𝑓
𝛿𝐿

)︁
−
, 𝛿𝑓
𝛿𝐿2

=
(︁

𝛿𝑓
𝛿𝐿𝐿1

)︁
−
.

Запишем правую часть (3.10) заменив (· · · )+ на (· · · )− (· · · )− и приведя подобные

Tr

(︂(︀
𝐿1

𝛿𝑓

𝛿𝐿1

)︀
−𝐿1

𝛿𝑔

𝛿𝐿1
−
(︀ 𝛿𝑓
𝛿𝐿1

𝐿1

)︀
−
𝛿𝑔

𝛿𝐿1
𝐿1 +

(︀
𝐿2

𝛿𝑓

𝛿𝐿2

)︀
−𝐿2

𝛿𝑔

𝛿𝐿2
−
(︀ 𝛿𝑓
𝛿𝐿2

𝐿2

)︀
−
𝛿𝑔

𝛿𝐿2
𝐿2

)︂
Теперь подставим формулы для 𝛿𝑓/𝛿𝐿1 найденные выше и воспользуемся тем что

в выражениях вида

(︂(︁
𝛿𝑓
𝛿𝐿𝐿1

)︁
−
𝐿2

)︂
−
внутренный минус может быть опущен. Тогда

получаем

Tr

(︂(︀
𝐿1𝐿2

𝛿𝑓

𝛿𝐿

)︀
−𝐿1

(︀
𝐿2

𝛿𝑔

𝛿𝐿

)︀
− −

(︀
𝐿2
𝛿𝑓

𝛿𝐿
𝐿1

)︀
−
(︀
𝐿2

𝛿𝑔

𝛿𝐿

)︀
−𝐿1+

+
(︀
𝐿2
𝛿𝑓

𝛿𝐿
𝐿1

)︀
−𝐿2

(︀ 𝛿𝑔
𝛿𝐿
𝐿1

)︀
− −

(︀ 𝛿𝑓
𝛿𝐿
𝐿1𝐿2

)︀
−
(︀ 𝛿𝑔
𝛿𝐿
𝐿1

)︀
−𝐿2

)︂
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Расписываем теперь сомножители с 𝑔 как (· · · )− = (· · · )−(· · · )+ и приведя подобные
получаем

Tr

(︂(︀
𝐿1𝐿2

𝛿𝑓

𝛿𝐿

)︀
−𝐿1𝐿2

𝛿𝑔

𝛿𝐿
−
(︀ 𝛿𝑓
𝛿𝐿
𝐿1𝐿2

)︀
−
𝛿𝑔

𝛿𝐿
𝐿1𝐿2,

)︂
то есть правую часть (3.10), что и требовалось доказать.

Важным следствием Теоремы 3.2 является преобразование Миуры:

𝐷𝑛 + 𝑢1𝐷
𝑛−1 + . . .+ 𝑢𝑛 = (𝐷 + 𝑎1) · . . . · (𝐷 + 𝑎𝑛) (3.11)

Задача 3.6. Проверьте явно, что преобразование Миуры 𝐷2 + 𝑢 = (𝐷 + 𝑎)(𝐷 − 𝑎)
является пуассоновым отображением.

Замечание 3.4. Зафиксируем преобразование Миуры (разложение (3.11)). Опре-
делим

𝐿𝑖 = (𝐷 + 𝑎𝑖) · . . . · (𝐷 + 𝑎𝑛)(𝐷 + 𝑎1) · . . . · (𝐷 + 𝑎𝑖 − 1).

Ясно, что (𝐷+𝑎𝑖)𝐿𝑖+1 = 𝐿𝑖(𝐷+𝑎𝑖), откуда (𝐷+𝑎𝑖)𝐿
𝑚/𝑛
𝑖+1 = 𝐿

𝑚/𝑛
𝑖 (𝐷+𝑎𝑖), для любого

𝑚 (индексы 𝑖 удобно считать циклически 𝑛+ 1 = 1). Отсюда следует, что

(𝐷 + 𝑎𝑖)(𝐿
𝑚/𝑛
𝑖+1 )+ − (𝐿

𝑚/𝑛
𝑖 )+(𝐷 + 𝑎𝑖) = (𝐷 + 𝑎𝑖)(𝐿

𝑚/𝑛
𝑖+1 )− + (𝐿

𝑚/𝑛
𝑖 )−(𝐷 + 𝑎𝑖)

является чисто дифференциальным оператором нулевого порядка, т.е. функцией.
Модифицированной системой Гельфанда-Дикого (системой 𝑛–mKdV) называется

система уравнений на 𝑎𝑖

𝜕𝑎𝑖
𝜕𝑡𝑚

= (𝐿
𝑚/𝑛
𝑖 )+(𝐷 + 𝑎𝑖) − (𝐷 + 𝑎𝑖)(𝐿

𝑚/𝑛
𝑖+1 )+. (3.12)

Выше мы показали, что эта система уравнений имеет смысл. Можно доказать, что
из этой системы следует обычная система Гельфанда Дикого (3.1) для всех 𝐿𝑖. Про-
ведем вычисление для 𝐿1:

𝜕

𝜕𝑡𝑚
𝐿1 =

𝑛∑︁
𝑖=1

(𝐷 + 𝑎1) · . . . (𝐷 + 𝑎𝑖−1) ·
(︁

(𝐿
𝑚/𝑛
𝑖 )+(𝐷 + 𝑎𝑖) − (𝐷 + 𝑎𝑖)(𝐿

𝑚/𝑛
𝑖+1 )+

)︁
·

· (𝐷 + 𝑎𝑖+1) · . . . · (𝐷 + 𝑎𝑛) = (𝐿
𝑚/𝑛
1 )+𝐿1 − 𝐿1(𝐿

𝑚/𝑛
1 )+ = [(𝐿

𝑚/𝑛
1 )+, 𝐿1].

4. Классические 𝑟 матрицы и скобки Пуассона

4.1. Классические 𝑟-матрицы (по [3])

Пусть g — алгебра Ли. Линейный оператор 𝑟 мы назовем классической 𝑟-матрицей,
если скобка на g заданная формулой

[𝑋,𝑌 ]𝑟 = [𝑟𝑋, 𝑌 ] + [𝑋, 𝑟𝑌 ] (4.1)
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задает структуру алгебры Ли. Косокоммутативность очевидна, надо проверять толь-
ко тождество Якоби.
Благодаря 𝑟 у нас есть две Пуассоновы структуры на пространстве g*:

{ℎ1, ℎ2}(𝐿) = 𝐿([𝑋1, 𝑋2]); {ℎ1, ℎ2}𝑟(𝐿) = 𝐿([𝑋1, 𝑋2]𝑟). (4.2)

Здесь 𝐿 ∈ g*, ℎ1, ℎ2 функции на g*, 𝑋𝑖 = 𝑑ℎ𝑖 ∈ g.

Теорема 4.1. Пусть g алгебра Ли с 𝑟-матрицей 𝑟. Тогда
а) ad* инвариантные функции на g* находятся в инволюции относительно обеих

скобок Пуассона.

б) Уравнения движения на g*, задаваемое инвариантным гамильтонианом ℎ от-

носительно скобки {·, ·}𝑟, допускает эквивалентные формы записи

𝑑𝐿

𝑑𝑡
= ad*

𝑟 𝑑ℎ(𝐿) · 𝐿;
𝑑𝐿

𝑑𝑡
= ad*𝑀ℎ · 𝐿, 𝑀ℎ = 𝑟(𝑑ℎ(𝐿)). (4.3)

Доказательство. а) Если функция ℎ является ad* инвариантной, то для любого
𝑌 ∈ g имеем

(︀
ad* 𝑌 ·𝐿

)︀
(𝑑ℎ(𝐿)) = 0. Переписывая это условие в виде 𝐿([𝑌, 𝑑ℎ(𝐿)]) = 0

и используя определение (4.2) мы получаем требуемое.
б) Первая формула в (4.3) есть стандартная запись уравнений гамильтоновых от-

носитльно скобки Костанта-Кириллова. Вторая формула следует из первой исполь-
зуя, что ad*

𝑟 состоит из двух слагаемых, из которых второе занулится поскольку
ad* 𝑑ℎ(𝐿) · 𝐿 = 0 для инвариантной функции ℎ.

Замечание 4.1. Геометрический смысл формулы (4.3) в том траектории системы
с гамильтонианом ℎ лежат в пересечении двух систем орбит в g* — орбит g и g𝑟.

Естественно спросить как строить такие 𝑟. Тождество Якоби для скобки (4.2)
имеет вид [︁

𝑋, [𝑟𝑌, 𝑟𝑍] − 𝑟[𝑟𝑌, 𝑍] − 𝑟[𝑌, 𝑟𝑍]
]︁

+ cyclic permuations = 0, (4.4)

для любых 𝑋,𝑌, 𝑍 ∈ g. Это условие очевидно выполнено, если

[𝑟𝑋, 𝑟𝑌 ] − 𝑟[𝑟𝑋, 𝑌 ] − 𝑟[𝑋, 𝑟𝑌 ] = 0 (4.5)

для любых 𝑋,𝑌 ∈ g. Это уравнение может быть названо классическим уравнением

Янга-Бакстера, ниже мы увидим, как оно связано с обычной формой уравнения
Янга-Бакстера. Пока можно отметит, что оно является квадратичным по 𝑟 и линей-
ным по структурным константам алгебры g.
Но несложно заметить, что на самом деле достаточно меньшего, а именно урав-

нения
[𝑟𝑋, 𝑟𝑌 ] − 𝑟[𝑟𝑋, 𝑌 ] − 𝑟[𝑋, 𝑟𝑌 ] = 𝛼[𝑋,𝑌 ]. (4.6)

Здесь 𝛼 может быть любым числом, уравнение (4.4) будет выполнено всилу тожде-
ства Якоби в алгебре g. Уравнение (4.6) называется модифицированным классиче-
ским уравнением Янга-Бакстера.
Решения уравнения (4.6) можно строить при помощи следующей конструкции.
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Лемма 4.1. Пусть (g, g+, g−) это тройка состоящая из алгебры Ли g и двух ее

подалгебр g+, g− таких, что g = g+ ⊕ g− как векторное пространство. Обозначим

через 𝑃+, 𝑃− проекторы на g+, g− вдоль второго слагаемого. Тогда оператор 𝑟 =
𝑃+ − 𝑃− удовлетворяет соотношению (4.6).

Заметим, что в лемме не предполагается (и обычно неверно в примерах), что
подалгебры g− и g+ коммутируют. Иными словами g ̸= g+ ⊕ g− как алгебра Ли.

Пример 4.1. Тройка (g, b, n−) удовлетворяет условию леммы. Здесь g это простая
алгебра Ли, b это борелевская подалгебра, n− это противоположная нильпотентая
алгебра.
Тройка (gl(𝑛), so(𝑛), b) удовлетворяет условию леммы. Здесь so(𝑛) это алгебра Ли

кососимметрических матриц, b это алгебра Ли верхнетреугольных матриц.

Пример 4.2. Пусть PD —это алгебра Ли всех псевдодифференциальных опера-
торов вида

∑︀−∞
𝑖=𝑚 𝑥𝑖𝐷

𝑖, PD+ — это подалгебра Ли дифференциальных операторов,
PD− — это подалгебра Ли чисто интегральных операторов. Тогда тройка (PD,PD+,PD−)
уловлетворяет условиям леммы.

Пример 4.3. Пусть g— это полупростая алгебра Ли. Тогда тройка (g[𝑡, 𝑡−1], g[𝑡], 𝑡−1g[𝑡−1])
является условиям леммы.

Задача 4.1. Рассмотрим тройку (gl(𝑛), so(𝑛), b), гамильтониан ℎ = tr𝐿2, 𝐿 бес-

следовая трехдиагональная матрица

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1 𝑎1

𝑎1
. . .

. . .
. . .

. . .
. . .

. . .
. . . 𝑎𝑛−1

𝑎𝑛−1 𝑏𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Напишите гамильтоновы уравнения (4.3), должно получится что-то известное.

4.2. Классическое уравнение Янга-Бакстера

Предположим теперь, что на алгебре Ли g есть инвариантная невырожденная сим-
метричная билинейная форма (·, ·). При помощи нее можно отождествлять про-
странства g и g*, второе уравнение (4.3) тогда можно рассматривать как уравнение
Лакса.
Предположим также, что 𝑟 является кососимметическим оператором (относитель-

но данной билинейной формы). Тогда подняв (или опустив) индекс ему можно со-
поставить элемент 𝑟 ∈ Λ2g ⊂ g⊗ g.
Условие (4.5) тогда перепишется в виде

CYB(𝑟) := [𝑟12, 𝑟13] + [𝑟12, 𝑟23] + [𝑟13, 𝑟23] = 0. (4.7)
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Здесь CYB(𝑟) ∈ g ⊗ g ⊗ g, и мы используем тензорные обозначения, т.е. если 𝑟 =∑︀
𝑥𝑖 ⊗ 𝑦𝑖, то

𝑟12 =
∑︁

𝑥𝑖 ⊗ 𝑦𝑖 ⊗ 1, 𝑟13 =
∑︁

𝑥𝑖 ⊗ 1 ⊗ 𝑦𝑖, 𝑟23 =
∑︁

1 ⊗ 𝑥𝑖 ⊗ 𝑦𝑖.

Уравнение (4.7) называется классическим уравнением Янга-Бакстера.
Уравнение (4.6) означает, что 𝐶𝑌 𝐵(𝑟) = 𝛼𝑐, где 𝑐 —- это тензор структурных

констант алгебры Ли, с поднятыми индексами посредством билинейной формы.

Задача 4.2. Докажите, что 𝑐 является кососимметричным и инвариантым от-

носительно действия g.

Модифицированным уравнением Янга-Бакстера называется условие, что тензор
CYB(𝑟) является g инвариантным. Заметим, что для простых алгебр Ли такой ин-
вариантный элемент обязательно будет пропорционален 𝑐.
Оператор 𝑟 построенный в лемме 4.1 является кососимметричным, если подал-

гебры g− и g+ являются изотропными относительно этой формы (т.е. ограничение
формы на них равно нулю). В этом случае — выполнение условия леммы 4.1 и ко-
изотропность — тройка алгебр Ли (g, g+, g−) называется тройкой Манина.

Пример 4.4. Посмотрим на примеры из прошлого параграфа. Тройка (PD,PD+,PD−)
является тройкой Манина, спаривание задается функциалом Адлера Tr(𝑋𝑌 ).
Тройка (g[𝑡, 𝑡−1], g[𝑡], 𝑡−1g[𝑡−1]) также является тройкой Манина, спаривание зада-

ется формулой (𝑋,𝑌 ) = tr Res𝑋𝑌 . В случае g = gl(𝑛) матрица 𝑟 ∈ g[𝑧, 𝑧−1]⊗[𝑤,𝑤−1]
имеет явный вид:

𝑟 =
𝑛∑︁

𝑎,𝑏=1

(︃ ∞∑︁
𝑘=0

𝐸𝑎𝑏𝑧
𝑘 ⊗ 𝐸𝑏𝑎𝑤

−𝑘−1 −
∞∑︁
𝑘=0

𝐸𝑎𝑏𝑧
−𝑘−1 ⊗ 𝐸𝑏𝑎𝑤

𝑘

)︃
=

2𝑃

𝑤 − 𝑧
.

Здесь 𝑃 — оператор перестановки.
Тройки (g, b, n−) и (gl(𝑛), so(𝑛), b) тройками Манина не являются, соответствую-

щие операторы 𝑟 не являются кососимметричным.

Теорема 4.2 (Дринфельд). Пусть g — алгебра Ли, 𝑟 ∈ Λ2g. Пусть 𝛿 : g → Λ2g
определен по формуле

𝛿(𝑎) = [𝑎⊗ 1 + 1 ⊗ 𝑎, 𝑟],

𝑎 ∈ g. Тогда тройка (g, [ , ], 𝛿) задают структуру биалгебры Ли если и только если

CYB(𝑟) ∈ g⊗3 является g-инвариантным.

Доказательство теоремы можно посмотреть в [13]. Поясним только формулиров-
ку, биалгеброй Ли называется алгебра Ли g снабженная отображением 𝛿 : g → Λ2g
таким, что 𝛿* задает структуру алгебры Ли на g* и эти две структуры согласованы
в смысле

𝛿([𝑎, 𝑏]) = [𝑎⊗ 1 + 1 ⊗ 𝑎, 𝛿(𝑏)] + [𝛿(𝑎), 𝑏⊗ 1 + 1 ⊗ 𝑏].
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Для 𝛿 определенного как в теореме условие согласованности выполнено автомати-
чески, единственное, что надо проверять это тождество Якоби для 𝛿*, теорема го-
ворит, что оно эквивалентно модифицированному классическому уравнению Янга-
Бакстера.
Биалгебры Ли построенные как в теореме называются кограничными. Если до-

полнительно CYB(𝑟) = 0, то биалгебра Ли называется треугольной.
Предположим теперь, что 𝑟 ∈ g ⊗ g не обязательно кососсимметричный элемент,

𝑟 = 𝑟𝑆 + 𝑟𝐴, где 𝑟𝑆 ∈ 𝑆2g, 𝑟𝐴 ∈ Λ2g. Биалгебра Ли называется квазитреугольной,
если 𝑟𝑆 является g-инвариантным и CYB(𝑟) = 0.

Задача 4.3. Проверьте, что если 𝑟 ∈ g ⊗ g удовлетворяет условию выше (квази-

треугольности), то CYB(𝑟𝐴) является g инвариантным, т.е. выполнены условия

теоремы 4.2, и 𝛿 постренное по 𝑟𝐴 действительно задает биалгебру.

Заметим, что для простой алгебры пространство g-инвариантов в 𝑆2g ялвяется
одномерным, порожденное инвариантным скалярным произведением на g*.
Как следует из задачи выше, для 𝑟 дающих квазиотреугольную структуру мы

можем построить 𝛿 которая определяет структуру алгебры Ли на g*. Отождествляя
теперь g и g* посредством инвариантного скалярного произведения (или 𝑟𝑆) мы
получаем новую структуру алгебры Ли на g, по которой можно восстанавливать 𝑟.2

Задача 4.4. Докажите, что

𝑟 =
1

2

∑︁
ℎ𝑖 ⊗ ℎ𝑖 +

∑︁
𝛼>0

𝑒𝛼 ⊗ 𝑒−𝛼. (4.8)

определяет квазитреугольную структуру на любой простой алгебре Ли g. Здесь ℎ𝑖
ортонормированный базис в картановской подалгебре, 𝑒𝛼 корневой базис, с норми-

ровкой (𝑒−𝛼, 𝑒𝛼) = 1.
С каким оператором 𝑟 связна такая матрица 𝑟?

4.3. Скобка на группе, группы Пуассона-Ли

Группой Пуассона-Ли называется группа Ли снабженная структурой Пуассонова
многообразия в которой отображение умножение 𝐺×𝐺→ 𝐺 является отображением
Пуассоновых многообразий.
Более явно это означает, что для любых двух функций 𝜑, 𝜓 ∈ 𝐶∞(𝐺), и элементов

𝑥0, 𝑦0 ∈ 𝐺 верно{︀
𝜑, 𝜓

}︀
(𝑥0𝑦0) =

{︀
𝜑(𝑥𝑦0), 𝜓(𝑥𝑦0)

}︀
(𝑥0) +

{︀
𝜑(𝑥0𝑦), 𝜓(𝑥0𝑦)

}︀
(𝑦0) (4.9)

В определении группы Пуассона-Ли естественно требовать согласованности взя-
тия обратного с пуассоновой структурой, но оказывается, что нужное свойство ан-
типуассоновость можно вывести из остальных аксиом, см. [13, Sec. 2.1].

2Отметим, наоборот, по 𝑟 𝑟 воостановить можно не всегда, т.е. подходы при помощи 𝑟 и 𝑟 не
полностью эквивалентны, см [4].
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Замечание 4.2. Если g алгебра Ли группы Пуассона-Ли 𝐺, то на g возникает
структура биалгебры Ли.

Для матричных групп скобку Пуассона-Ли часто задают по формуле

[𝐿1⊗, 𝐿2] = [𝑟, 𝐿1 ⊗ 𝐿2] (4.10)

Можно проверить, что тождество Якоби для этой скобки вытекает из модифициро-
ванного уравнения Янга-Бакстера и кососимметричности 𝑟 ∈ g ⊗ g. Можно, как в
предыдущием пункте заменить 𝑟 на 𝑟𝑆 + 𝑟𝐴, где 𝑟𝑆 симметричный g инвариантный
тензор, формула (4.10) все равно будет выполняться.
То, что умножения в группе является отображением Пуассоновых многообразий

для скобки (4.10) следует из тождества Лейбница

[𝑟, 𝐿1𝐿
′
1 ⊗ 𝐿2𝐿

′
2] = [𝑟, 𝐿1 ⊗ 𝐿2](𝐿

′
1 ⊗ 𝐿′

2) + (𝐿1 ⊗ 𝐿2)[𝑟, 𝐿
′
1 ⊗ 𝐿′

2].

Задача 4.5. Определим скобку на группе 𝐺𝐿(2) при помощи 𝑟-матрицы (4.8). Най-

дите скобку матричных элементов, то есть функций 𝑎, 𝑏, 𝑐, 𝑑, где 𝑔 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
.

Проверьте, что выполняется свойство (4.9). Найдите Казимиры этой скобки.

В более общем виде (для не обязательно матричной группы), формулу (4.10) мож-
но переписать в виде

{𝜑, 𝜓} =
∑︁

𝑟𝜇𝜈(𝜕𝜇𝜑𝜕𝜈𝜓 − 𝜕′𝜇𝜑𝜕
′
𝜈𝜓),

где 𝜑, 𝜓 ∈ 𝐶∞(𝐺), 𝑟 =
∑︀
𝑟𝜇𝜈𝑒𝜇⊗𝑒𝜈 , 𝜕𝜇 левоинвариантное векторное поле на 𝐺 задан-

ное элементом 𝑒𝜇, 𝜕
′
𝜇 правоинвариантное векторное поле на 𝐺 заданное элементом

𝑒𝜇.
Перейдем от матрицы 𝑟 к оператору 𝑟 : g* → g. Пусть 𝑋 = 𝑑𝜑, 𝑌 = 𝑑𝜓. Тогда (для

матричной группы)

{𝜑, 𝜓}(𝐿) = (𝐿𝑋)
(︀
𝑟(𝐿𝑌 )

)︀
− (𝑋𝐿)

(︀
𝑟(𝑌 𝐿)

)︀
. (4.11)

Для не матричной группы надо вместо умножения слева и справа 𝑋,𝑌 на 𝐿 исполь-
зовать дифференциалы отображения левого и правого сдвига на группе.

Замечание 4.3. Формула (4.11) уже очень похожа на формулу (3.5) для второй
скобки. Некоторая разница состоит в том, что для алгебры Ли псевдодифференци-
альных операторов g = PD нет группы Ли. Но в этом случае алгебра Ли g является
на самом деле ассоциативной алгеброй, скалярное произведение (·, ·) согласовано с
умножением. Определим градиент гладкой функции на g по формуле

(grad𝜙(𝐿), 𝐴) =

(︂
𝑑

𝑑𝑡

)︂
𝜙(𝐿+ 𝑡𝐴), где 𝐿,𝐴 ∈ g

Пусть 𝑟 : g → g кососимметричен и удовлетворяет модифицированному уравнению
Янга-Бакстера. Тогда скобка Гельфанда-Дикого определена по формуле

{𝜙,𝜓}2(𝐿) =
(︁
𝑟(𝐿𝑋), 𝐿𝑌

)︁
+
(︁
𝑟(𝑋𝐿), 𝑌 𝐿

)︁
, где 𝑋 = grad𝜙, 𝑌 = grad𝜓. (4.12)
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Эта уже формула просто совпадает с формулой (3.5). Можно также ввести аналог
первой скобки по формуле

{𝜙,𝜓}2(𝐿) =
(︁
𝐿, [𝑟𝑋, 𝑌 ] + [𝑥, 𝑟𝑌 ]

)︁
,

эта стандартная скобка Костанта-Кириллова для (4.1). Эти две скобки коммутируют
между собой.

5. Квантовые 𝑊 алгебры

5.1. Квантовое преобразование Миуры

Пусть есть 𝑛 алгебр Гейзенберга, компоненты которых мы будем обозначать 𝑎𝑖,𝑟 или
𝑎𝑖[𝑟] с коммутационными соотношениями

[𝑎𝑖,𝑟, 𝑎𝑗,𝑠] = 𝑟𝛿𝑟+𝑠𝛿𝑖,𝑗 .

В терминах полей 𝜕𝜙𝑖(𝑧) =
∑︀

𝑘∈Z 𝑎𝑖,𝑘𝑧
−𝑘−1 соотношения записываются:

[𝜕𝜙𝑖(𝑧), 𝜕𝜙𝑗(𝑧)] = 𝛿𝑖,𝑗
∑︁
𝑘∈Z

𝑘
𝑤𝑘−1

𝑧𝑘+1
= 𝛿𝑖,𝑗𝛿

′
(︁ 𝑧
𝑤

)︁
,

где 𝛿 (𝑧/𝑤) =
∑︀

𝑘∈Z𝑤
𝑘/𝑧𝑘+1, через 𝛿′ обозначена производная по 𝑤. В терминах

операторных произведений имеем 𝜙𝑖(𝑧)𝜙𝑗(𝑤) ∼ 𝛿𝑖,𝑗 log(𝑧 − 𝑤).
Токи𝒲1(𝑧), . . . ,𝒲𝑛(𝑧) определяются при помощи квантового преобразования Ми-

уры:

(𝑖𝑄𝜕𝑧)
𝑛 +

𝑛∑︁
𝑘=1

𝒲𝑘(𝑧)(𝑖𝑄𝜕𝑧)
𝑛−𝑘 = :

(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙1(𝑧)

)︁
. . .
(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙𝑛(𝑧)

)︁
: . (5.1)

Посмотрим на классчический предел 𝜙𝑖 = 𝑏−1𝜙b
𝑖 , 𝑏→ 0. Тогда [𝜕𝜙b

𝑖 (𝑧), 𝜕𝜙b
𝑗 (𝑤)] =

~𝛿𝑖,𝑗𝛿′(𝑧/𝑤), где ~ = 𝑏2, в пределе 𝜕𝜙b
𝑖 (𝑧) → 𝑢𝑖(𝑧) и получаем скобку (3.8). Преобра-

зование Миуры (5.1) умноженное на 𝑏𝑛 стремится к классическому преобразованию
Миуры (3.11).
На третьей лекции говорилось, стандартная 𝛿′ скобка на 𝑢𝑖 (формула (3.8)) при

помощи преобразования Миуры связана со второй гамильтоновой структурой на
𝑊𝑖. Поэтому естественно ожидать, что коммутационные соотношения на 𝑊𝑖 будут
квантования второй гамильтоновой структуры в классической 𝑊 алгебре.
Алгебра порожденная токами 𝒲1(𝑧), . . . ,𝒲𝑛(𝑧) называется квантовой 𝑊 алгеб-

рой ̂︀gl(𝑛). Обозначается эта алгебра как𝑊 (̂︀gl(𝑛)). Отметим, что эта алгебра не явля-
ется универсальной обертывающей от алгебры Ли, это алгебра токов или, на более
математическом языке, вертексная алгебра.
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Легко посчитать первые примеры 𝒲𝑖:

𝒲1(𝑧) =
∑︁
𝑖

𝜕𝜙𝑖(𝑧), 𝒲2(𝑧) =
∑︁
𝑖<𝑗

:𝜕𝜙𝑖(𝑧)𝜕𝜙𝑗(𝑧): +𝑖𝑄
∑︁
𝑖

(𝑖− 1)𝜕2𝜙𝑖(𝑧),

𝒲3(𝑧) =
∑︁

𝑖<𝑗<𝑘

:𝜕𝜙𝑖(𝑧)𝜕𝜙𝑗(𝑧)𝜕𝜙𝑘(𝑧): +(𝑖𝑄)
∑︁
𝑖<𝑗

(︁
(𝑖− 1) :𝜕2𝜙𝑖(𝑧)𝜕𝜙𝑗(𝑧): +(𝑗 − 2) :𝜕𝜙𝑖(𝑧)𝜕

2𝜙𝑗(𝑧):
)︁

+

+ (𝑖𝑄)2
∑︁
𝑖

(𝑖− 1)(𝑖− 2)

2
𝜕3𝜙𝑖(𝑧).

Можно доказать (см [14]), что генераторы 𝒲𝑖(𝑧) удовлетворяют квадратичным
соотношениям вида

𝒲𝑖(𝑧)𝒲𝑗(𝑤) =
∑︁
𝑘=2

(𝑧 − 𝑤)−𝑘
∑︁

𝑝+𝑞=𝑖+𝑗−𝑘

𝐶𝑝𝑞
𝑖𝑗 𝒲𝑝(𝑧)𝒲𝑞(𝑤) + reg.

Пример 5.1. Если 𝑛 = 1, то𝑊 алгебра порождена просто током𝒲1(𝑧) размерности
1 и совпадает с алгеброй Гейзенберга.
Если 𝑛 = 2, то 𝑊 алгебра порождена двумя токами размерности 1 и 2. Как

вертексная алгебра она есть произведение алгебры Гейзенберга и алгебры Вирасоро.
Ток 𝑇 (𝑧) порождающий алгебру Вирасоро приведен ниже.

Замечание 5.1. Ток 𝒲1(𝑧) всегда порождает алгебру Гейзенберга. Часто удобно
его отщепить, тогда для 𝑛 = 2 скажем получит просто алгебра Вирасоро. Это дела-
ется так, определим 𝜙𝑖 = 𝜙𝑖 − 1

𝑛

∑︀
𝜙𝑗 . Компоненты токов 𝜙𝑖 по прежнему образуют

алгебру Гейзенберга, но теперь [𝑎̃𝑖,𝑟, 𝑎̃𝑗,𝑠] = 𝑟𝛿𝑟+𝑠(𝛿𝑖,𝑗 − 1
𝑛). Тогда токи 𝒲̃𝑘(𝑧) опреде-

ленные по формуле

(𝑖𝑄𝜕𝑧)
𝑛 +

𝑛∑︁
𝑘=2

𝒲̃𝑘(𝑧)(𝑖𝑄𝜕𝑧)
𝑛−𝑘 = :

(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙1(𝑧)

)︁
. . .
(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙𝑛(𝑧)

)︁
: . (5.2)

порождают алгебру которая называется квантовой 𝑊 алгеброй ̂︀sl(𝑛).

Задача 5.1. Проверьте, что все токи 𝒲̃𝑘 коммутируют с током 𝒲1.

Поясните также, что токи 𝒲̃𝑘 порождают подалгебру в 𝑊 (̂︀gl(𝑛)) (то есть вы-
ражаются через 𝒲𝑘) и что эта подалгебра является централизатором тока 𝒲1.

Ток 𝒲̃2 фиксируется однозначно с точностью до нормировки условиями, что он
имеет конформную размерность 2 и коммутирует с 𝒲1. Такой ток легко построить
явно поправляя 𝒲2, а именно:

𝑇 (𝑧) = −𝒲̃2(𝑧) = −
(︂
𝒲2(𝑧) − 𝑖𝑄

𝑛− 1

2
𝒲 ′

1(𝑧) −
𝑛− 1

2𝑛
:𝒲1(𝑧)𝒲1(𝑧):

)︂
, (5.3)

Ток 𝑇 (𝑧) определенный по такой формуле коммутирует с 𝒲1 и удовлетворяет ком-
мутационным соотношениям алгебры Вирасоро, эти условия определяют 𝑇 (𝑧) одно-
значно. Центральный заряд 𝑇 (𝑧) равен 𝑐 = (𝑛− 1)

(︀
1 + 𝑛(𝑛+ 1)𝑄2

)︀
.
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Задача 5.2. Проверьте соотношения на 𝑇 (𝑧) и формулу для центрального заряда.

Задача 5.3. Формула для преобразования Миуры является довольно специальной,

скажем при 𝑛 > 2 она не сводится к условию
∑︀
𝜙𝑖 = 0 . Например, покажите,

что если бы при 𝑛 = 3 мы бы определили 𝒲𝑘 по формуле

(𝑖𝑄𝜕𝑧)
3+𝒲̃2(𝑧)(𝑖𝑄𝜕𝑧)+𝒲̃3(𝑧) = :

(︁
𝑖𝑄𝜕𝑧+𝜕𝜙1(𝑧)

)︁(︁
𝑖𝑄𝜕𝑧+𝜕𝜙2(𝑧)

)︁(︁
𝑖𝑄𝜕𝑧−𝜕𝜙1(𝑧)−𝜕𝜙2(𝑧)

)︁
:,

то токи 𝒲2(𝑧), 𝒲3(𝑧), не будут образовывать замкнутой алгебры.

5.2. Скрининги

Произведение в правой части преобразования Миуры (5.1) можно разложить как
произведение 𝑚 скобок и 𝑛 −𝑚 скобок. Таким образом мы получаем отображение
∆: 𝑊 (̂︀gl(𝑛)) →𝑊 (̂︀gl(𝑚)) ⊗𝑊 (̂︀gl(𝑛−𝑚)). Об этом отображении можно думать как
о коумножении, для какого-то аффинного янгиана. Для коумножения важно, что
мы рассматриваем 𝑊 (̂︀gl(𝑛)), для 𝑊 (̂︀sl(𝑛)) коумножения не будет.
Перейдем к вопросу скринингов для 𝑊 (̂︀gl(𝑛)). В случае 𝑛 = 1 это алгебра Гейзен-

берга и никакой скрининг с ней коммутирует.
Посмотрим на 𝑊 (̂︀gl(2)), она порождается Гейзенергом 𝜑1(𝑧) + 𝜑2(𝑧) и алгеброй

Вирасоро выраженной по формуле (5.3). Последняя формула по сути эквивалентна
формуле (1.1), для Гейзенберга 𝑖√

2
(𝑎1,𝑟−𝑎2,𝑟) и 𝜆 = −𝑖√

2
𝑄. Используя Лиувиллевскую

параметризацию 𝑄 = 𝑏+ 𝑏−1 мы находим значения 𝛼+, 𝛼− по формуле (1.7)
Поэтому, скрининовские токи будут иметь вид

𝑆+(𝑧) =:exp(𝑖𝑏(𝜙1(𝑧) − 𝜙2(𝑧))):, 𝑆−(𝑧) =:exp(𝑖𝑏−1(𝜙1(𝑧) − 𝜙2(𝑧))): . (5.4)

Теперь рассмотрим 𝑊 (̂︀gl(𝑛)), для произвольного 𝑛. Для любого 1 ≤ 𝑘 ≤ 𝑛− 1 мы
имеем вложение 𝑊 (̂︀gl(𝑛)) →˓𝑊 (̂︀gl(𝑘− 1))⊗𝑊 (̂︀gl(2))⊗𝑊 (̂︀gl(𝑛− 𝑘− 1)). Скрининги
построенные по средней 𝑊 (̂︀gl(2)) коммутируют c ней и с остальными множителя-
ми, значит они коммутируют со всей 𝑊 (̂︀gl(𝑛)). Таким образом мы нашли 2(𝑛 − 1)
скринингов, их токи имеют вид

𝑆𝑘,+(𝑧) =:exp(𝑖𝑏𝛼𝑘 · ⃗𝜙(𝑧)):, 𝑆𝑘,−(𝑧) =:exp(𝑖𝑏−1𝛼𝑘 · ⃗𝜙(𝑧)): . (5.5)

Здесь ⃗𝜙(𝑧) = (𝜙1(𝑧), · · · , 𝜙𝑛(𝑧)), 𝛼𝑘 = 𝑒𝑘 − 𝑒𝑘+1 — простой корень для системы
корней 𝐴𝑛−1.
Как и раньше, скрининг определяется как контурный интеграл от тока

𝑆𝑘,± =

∮︁
𝑆𝑘,±(𝑥)𝑑𝑥

Для 𝑊 (̂︀sl(𝑛)) скрининги будут те же самые, можно записать 𝑆𝑘,± как экспоненты
от полей 𝜙.

Задача 5.4. а) Докажите, что при общем значении 𝑄 у алгебры 𝑊 (̂︀gl(3)) нет

других скринингов. В частности не простые корни не годятся.

б) То же утверждение про 𝑊 (̂︀gl(𝑛)).
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Замечание 5.2. Мы на самом деле не обсуждали как 𝑊 (̂︀gl(𝑛)) связана с gl(𝑛) (это
требует рассказа про редукцию Дринфельда-Соколова). В частности непонятно как
определять 𝑤 алгебры отвечающие другой простой алгебре Ли g.
Но что сделать легко, так это изменить формулу (5.5) для скрининговсих токов —

надо в качестве 𝛼𝑘 взять простые корни алгебры Ли g. В одном из возможных опре-
делений 𝑊 (g) — вертексная алгебра состоящия из локальных выражений коммути-
рующих с этими скринингами.

Задача 5.5. (если не решали раньше) Простейшим частным случаем 𝑊 алгебры

является 𝑄 = 0. В этом случае формулы для 𝒲𝑘 упрощаются, и мы имеем

𝒲𝑘(𝑧) =
∑︁

𝑎1<...<𝑎𝑘

:𝜕𝜙𝑎1(𝑧) · . . . · 𝜕𝜙𝑎𝑘(𝑧):

Интересно, что в этом случае есть другое, фермионное описание. А именно рас-

смотрим 𝑛 комплексных фермионов

𝜓*
𝑎(𝑧) =

∑︁
𝑝∈ 1

2
+Z

𝜓*
𝑎,𝑝𝑧

−𝑝− 1
2 , 𝜓𝑎(𝑧) =

∑︁
𝑝∈ 1

2
+Z

𝜓𝑎,𝑝𝑧
−𝑝− 1

2

cо стандартным операторным разложением

𝜓*
𝑎(𝑧)𝜓𝑏(𝑤) = −𝜓𝑏(𝑤)𝜓*

𝑎(𝑧) =
𝛿𝑎,𝑏
𝑧 − 𝑤

+ reg. 𝜓𝑎(𝑧)𝜓𝑏(𝑤) = 𝜓*
𝑎(𝑧)𝜓*

𝑏 (𝑤) = reg,

или, эквивалентно коммутационными соотношениям мод

{𝜓*
𝑎,𝑝, 𝜓𝑏,𝑞} = 𝛿𝑎,𝑏𝛿𝑝+𝑞,0, {𝜓𝑎,𝑝, 𝜓𝑏,𝑞} = {𝜓*

𝑎,𝑝, 𝜓
*
𝑏,𝑞} = 0, 𝑝, 𝑞 ∈ 1

2
+ Z.

Тогда, если ввести 𝐽𝑎𝑏(𝑧) =:𝜓*
𝑎(𝑧)𝜓𝑏(𝑧) :, то они удовлетворяют соотношениям

алгебры ̂︀gl(𝑛) на уровне 1. В терминах бозонов эти токи 𝐽𝑎𝑏(𝑧) имеют вид вер-

тексных операторов с еще некоторым знаком возникающим из-за упорядочивания

фермионов.

Если определить 𝑆𝑎𝑏 =
∮︀
𝐽𝑎𝑏(𝑥)𝑑𝑥, то 𝑆𝑎𝑏 образуют алгебру Ли gl(𝑛) и все явля-

ются скринингами, то есть коммутируют с 𝑊 алгеброй. Формулой (5.5) опысы-
ваются только 𝐽𝑎𝑏(𝑥) отвечающие простым корням, т.е. |𝑎− 𝑏| = 1.
Образующие 𝑊 алгебры можно написать через фермионы

𝑁∑︁
𝛼=1

𝜓*
𝛼

(︂
𝑧 +

1

2
𝑡

)︂
𝜓𝛼

(︂
𝑧 − 1

2
𝑡

)︂
=
𝑁

𝑡
+

∞∑︁
𝑘=1

𝑡𝑘−1

(𝑘 − 1)!
𝑈𝑘(𝑧)

Несложно проверить, что 𝑈𝑘(𝑧) коммутируют со скринингами, но отметим, что

это другие, отличные от 𝒲𝑘 образующие.

Задача 5.6. Обозначим 𝒱(𝑧) ток определенный по формуле

𝒱(𝑧) = (−1)𝑛
(︁

:
(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙1(𝑧)

)︁
. . .
(︁
𝑖𝑄𝜕𝑧 + 𝜕𝜙𝑛(𝑧)

)︁
:
)︁

1.
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С точностью до знака это просто последний ток в 𝑊 (̂︀gl(𝑛)). Докажите, что

помимо указанных выше скринингов он коммутирует также с с интегралами от

токов

𝑆𝑛,+(𝑧) =:exp
(︁
𝑖𝑏(𝜙𝑛−1(𝑧) + 𝜙𝑛(𝑧))

)︁
:, 𝑆𝑛,−(𝑧) =:exp

(︁
𝑖𝑏−1(𝜙𝑛−1(𝑧) + 𝜙𝑛(𝑧)

)︁
: .

Видно, что этот скрининг соответствует простому корню системы 𝐷𝑛. Мож-

но доказать, что подалгебра в 𝑊 (̂︀gl(𝑛)) порожденная током 𝒱(𝑧) совпадает с

𝑊 ( ̂︀so(2𝑛)).

6. Соотношения Серра

6.1. Квантовые группы

Пусть g — простая алгебры Ли, ранга 𝑙 с матрицей Картана 𝐴 = (𝑎𝑖,𝑗)
𝑙
𝑖,𝑗=1. Тогда

ее нильпотентная подалгебра n порождается образующими 𝑒1, . . . , 𝑒𝑙 с Серровскими
соотношениями

(ad 𝑒𝑖)
−𝑎𝑖,𝑗+1𝑒𝑗 = 0. (6.1)

Здесь ad это присоединенное представление. В случае системы корней 𝐴𝑙 соотноше-
ние (в универсальной обертывающей 𝑈(n)) можно записать как

𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖 = 0, |𝑖− 𝑗| > 1; 𝑒2𝑖 𝑒𝑗 − 2𝑒𝑖𝑒𝑗𝑒𝑖 + 𝑒𝑗𝑒
2
𝑖 = 0, |𝑖− 𝑗| = 1. (6.2)

Перейдем теперь к квантовой группе 𝑈𝑞(n). Она порождена образующим𝐸1, . . . , 𝐸𝑙,
которые градуированы решеткой корней. То есть для любого монома вида 𝑥 =
𝐸𝑖1 · . . . 𝐸𝑖𝑘 определен его вес wt(𝑥) =

∑︀
𝛼𝑖𝑘 , где 𝛼𝑖𝑘 простые корни. Определим

𝑞-коммутатор однородных элементов по формуле

[𝑥, 𝑦]𝑞 = 𝑥𝑦 − 𝑞(wt(𝑥),wt(𝑦))𝑦𝑥. (6.3)

В этой формуле (·, ·) это скалярное произведение на решетке корней. Построенное
таким образом присоединенное действие мы будем обозначать ad𝑞. Конечно форму-
лу для ad𝑞 можно получить из формул для коумножения и антипода в квантовой
группе.
Алгебра 𝑈𝑞(n) порождена образующим 𝐸1, . . . , 𝐸𝑙 которые должны удовлетворять

соотношениям Серра
(ad𝑞 𝐸𝑖)

−𝑎𝑖,𝑗+1𝐸𝑗 = 0. (6.4)

В случае системы корней 𝐴𝑙 эти соотношения можно расписать более явно в виде

𝐸𝑖𝐸𝑗−𝐸𝑗𝐸𝑖 = 0, |𝑖−𝑗| > 1; 𝐸2
𝑖 𝐸𝑗−(𝑞+𝑞−1)𝐸𝑖𝐸𝑗𝐸𝑖+𝐸𝑗𝐸

2
𝑖 = 0, |𝑖−𝑗| = 1. (6.5)

То есть просто натуральное число 2 заменилось на 𝑞-число [2]𝑞 = (𝑞2−𝑞−2)/(𝑞−𝑞−1).

Задача 6.1. Пусть 𝑞 = exp(2𝜋𝑖/𝑝), 𝑝 целое число большее 2. Докажете (выведите

из соотношений Серра), что 𝐸𝑝
𝑖 коммутирует с остальными 𝐸𝑗.
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6.2. Соотношения на скрининги

Мы сейчас покажем, что скрининги формально удовлетворяют соотношениям Серра
(6.5) (см. [8] и ссылка там). Обозначим

“𝑆𝑗1 · · ·𝑆𝑗𝑘 ” :=

∫︁
Γ

(︃∏︁
𝑙<𝑘

(𝑥𝑟 − 𝑥𝑠)
𝑏2

)︃(︁∏︁
𝑥
𝑏𝛼𝑗𝑟𝜆
𝑟

)︁
:𝑒𝑏𝛼𝑗1

·𝜙⃗(𝑥1) · . . . 𝑒𝑏𝛼𝑗𝑘
·𝜙⃗(𝑥𝑘): 𝑑𝑥1 . . . 𝑑𝑥𝑘

Здесь Γ это цикл состоящий из вложенных друг в друга кривых охватывающих
ноль, начинающися и заканчивающихся в 1. Подинтегральное выражение понима-
ется как аналитически продолженное с области 0 < 𝑥𝑛 < . . . < 𝑥1, где оно прини-
мает вещественные значения (при вещественном 𝑏2). Этот есть просто применение
𝑛 скринингов — интегралов от токов 𝑆𝑗,+(𝑥) (5.5).
Обозначим теперь

𝐼𝑗1···𝑗𝑘 :=

∫︁
0≤arg 𝑥1<...<arg 𝑥𝑘<2𝜋

(︃∏︁
𝑟<𝑠

(𝑥𝑟 − 𝑥𝑠)
𝑏2

)︃(︁∏︁
𝑥
𝑏𝛼𝑖𝑟 ·𝜆
𝑟

)︁
:𝑒𝑏𝛼𝑗1

·𝜙⃗(𝑥1) · . . . 𝑒𝑏𝛼𝑗𝑘
·𝜙⃗(𝑥𝑘): 𝑑𝑥1 . . . 𝑑𝑥𝑘

Здесь в интеграле все 𝑥𝑗 лежат на единичной окружности, упорядоченные.
Интегралы “𝑆𝑗1 · · ·𝑆𝑗𝑘 ” деформируя контур сводятся к интегралам вида 𝐼𝑗1···𝑗𝑘 , од-

нако из-за того, что радиальный порядок может не совпасть с порядком на окруж-
ности надо будет переобозначать 𝑥𝑗 , и отсюда будут получаться фазы. Например

“𝑆1𝑆1” = (1 + 𝑞2)𝐼11, “𝑆1𝑆2” = 𝐼12 + 𝑞−1𝐼21,

где 𝑞 = exp(𝑖𝜋𝑏2).
Отсюда следует, что

“[𝑆1, 𝑆2]𝑞” = 𝑆1𝑆2 − 𝑞−1𝑆2𝑆1 = (1 − 𝑞−2)𝐼12

“[𝑆1, [𝑆1, 𝑆2]𝑞]𝑞” = 𝑆1(1 − 𝑞−2)𝐼12 − 𝑞(1 − 𝑞−2)𝐼12𝑆1 = 0.

То есть мы проверили соотношения Серра (6.5)

“𝑆1𝑆1𝑆2 − (𝑞 + 𝑞−1)𝑆1𝑆2𝑆1 + 𝑆2𝑆1𝑆1” = 0.

Задача 6.2. Пусть 𝛼𝑖, 𝛼𝑗 какие-то два простых корня системы корней 𝑋𝑁 . Дока-

жите, что “ ad𝑚
𝑞 𝑆𝑖 ·𝑆𝑗” = 𝐶𝑚𝐼𝑖,...,𝑖,𝑗. Найдите 𝐶𝑚. Выведите отсюда соотношения

Серра (6.4).

Замечание 6.1. Выше мы рассматривали только скрининги 𝑆𝑗,+. Скрининги 𝑆𝑗,−
также удовлетворяют соотношениям Серра, но с другим (модулярно преобразован-
ным) параметром 𝑞 = exp(𝑖𝜋𝑏−2). Т.е. и 𝑆𝑗,+ и 𝑆𝑗,− порождают нильпотентные по-
далгебры квантовой группы, но эти нильпотентные подалгебры не склеиваются в
одну алгебру (при общем значении 𝑏, см важное исключение ниже).
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Элементы эти двух квантовых групп формально коммутируют или антикоммути-
руют

𝑆𝑖,+(𝑥)𝑆𝑗,−(𝑦) = (𝑥− 𝑦)(𝛼𝑖,𝛼𝑗) :𝑆𝑖,+(𝑥)𝑆𝑗,−(𝑦):= (−1)(𝛼𝑖,𝛼𝑗)𝑆𝑗,−(𝑦)𝑆𝑖,+(𝑥).

Подкрутив определения 𝑖,+, 𝑆𝑗,− (как в случае 𝑏 = 𝑖 ниже) на некоторые знаки можно
получить, что эти две квантовые группы просто коммутируют.

Пример 6.1. Мы обсуждали на прошлой лекции, что в случае 𝑏 = 𝑖 есть большая̂︀gl(𝑛) уровня 1 симметрия. Скрининги 𝑆𝑎𝑏 порождают gl(𝑛). Формула для 𝑞 выше
дает 𝑞 = 𝑞 = −1, но этот знак как раз подправляется упомянутыми выше знаками
в бозонизации токов 𝐽𝑎𝑏(𝑧).
Отметим еще, что в этом примере две квантовые группы склеились n+ и n− от

одной gl(𝑛).

Пример 6.2. Центральным зарядом минимальной модели называется случай 𝑏 =
𝑖
√︀
𝑝/𝑝′. В этом случае 𝑞, 𝑞 являются корнями из 1 и по задаче выше квантовые

группы имеют большой центр. Теория представлений при этом конечно приобрета-
ет новые черты, что и соответствуют специальным конформными теориям — мини-
мальным моделям.

7. Одевание вертексного оператора скринингом

Рассмотрим двумерное уравнение Лиувиллся

𝜕𝜕𝜙 = 𝑚𝑒𝜙.

Из этого уравнения следует, что токи

𝑇 = −1

4
(𝜕𝜙)2 +

1

2
𝜕2𝜙, 𝑇 = −1

4
(𝜕𝜙)2 +

1

2
𝜕2𝜙,

являются голоморфной и антиголоморфной функций соотественно 𝜕𝑇 = 𝜕𝑇 = 0.
Поля вида 𝑒(1−𝑛)𝜙, 𝑛 ∈ Z>0 удовлетворяют дифференциальным уравнениям с

коэффицентами зависящими только от 𝑇 . Легко проверить это для первых 𝑛

𝜕 · 1 = 0; (7.1)

(𝜕2 + 𝑇 )𝑒−𝜙/2 = 0; (7.2)

(𝜕3 + 4𝑇𝜕 + 2𝜕𝑇 )𝑒−𝜙 = 0; (7.3)

. . . (7.4)

дальше это наверное как-то можно доказать.
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8. Классические конформные блоки

8.1. Действие Лиувилля

Алгебра Вирасоро с центральным зарядом

𝑐 = 1 + 6𝑄2, где 𝑄 = 𝑏−1 + 𝑏

возникает из тензора энергии импульса в теории Лиувилля. Пусть 𝑔𝑎𝑏 метрика на
поверхности Σ, 𝑅 — ее кривизна, 𝜑 скалярное поле на поверхности Σ. Действие
Лиувилля имеет вид

𝑆𝐿 =

∫︁ (︂
1

4𝜋
𝑔𝑎𝑏𝜕𝑎𝜑𝜕𝑏𝜑+ 𝜇𝑒2𝑏𝜑 +𝑄

𝑅

4𝜋
𝜑

)︂
√
𝑔 𝑑2𝑥, (8.1)

Эта теория является конформной при преобразованиях 𝑔𝑎𝑏 → Ω𝑔𝑎𝑏. Экспонента име-
ет аномальную размерность,

√
𝑔𝑒2𝑏𝜑 → Ω1+𝑏2√𝑔𝑒2𝑏𝜑, это мы компенсируем сдви-

гом 𝜑:

𝜑→ 𝜑− 𝑄

2
log Ω,

но тогда из первого слагаемого возникает поправка. Там будет член квадратичный
по Ω, но он не зависит от 𝜑 и поэтому выносится (он связан с конформной аномалией
теории).

Задача 8.1. Проверьте, что член линейный по Ω из первого и последнего слагаемо-

го в действии (8.1) сокращается (достаточно проверить для метрики 𝑔𝑎,𝑏 = 𝛿𝑎,𝑏).

Последнее слагаемое в действии (8.1) часто не пишут имея ввиду, что метрика
плоская кроме бесконечности, то есть в конечной части 𝑅 = 0, но это конечно упро-
щающая изложение небрежность, это слагаемое нужно.
Пусть 𝒱𝛼 = 𝑒2𝛼𝜑, его размерность равна ∆𝛼 = 𝛼(𝑄 − 𝛼). Главным объектом для

нас является коррелятор

⟨𝒱𝛼1(𝑧1, 𝑧1) . . .𝒱𝛼𝑛(𝑧𝑛, 𝑧𝑛)⟩ =

∫︁
𝐷𝜑𝑒−𝑆𝐿

∏︁
𝑒2𝛼𝑘𝜑(𝑧𝑘,𝑧𝑘). (8.2)

Зависимоть от 𝜇 простая, его всегда можно убрать из действия сдвигом 𝜑→ 𝜑− log 𝜇
2𝑏 ,

тогда (8.2) умножится на 𝜇
1
2𝑏

(
∑︀

𝛼𝑘−𝑄
∫︀
𝑅/4𝜋), по теореме Гаусса-Бонне 1

2𝜋

∫︀
𝑅 = 2 −

2𝑔Σ, где 𝑔Σ — род поверхности Σ.

8.2. Классический предел

Теперь пусть 𝜑 = 𝑏−1𝜙, ~ = 𝑏2, 𝜇 = 𝑚𝑏−2, 𝛼𝑘 = 𝑏−1𝜂𝑘 (сравните с формулами из
пункта 5.1). Тогда, коррелятор (8.2) имеет вид

⟨· · · ⟩ ∼∈ 𝐷𝜙𝑒−
1
𝑏2

𝑆 → 𝑒−
1
𝑏2

𝑆cl ,
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где

𝑆 =

∫︁ (︂
1

4𝜋
𝑔𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙+𝑚𝑒2𝜙 +

1 + 𝑏2

4𝜋
𝑅𝜙

)︂
√
𝑔 𝑑2𝑥−

∑︁
2𝜂𝑘𝜙𝑘(𝑧𝑘𝑧𝑘)

Предел 𝑏→ 0 называется классическим, центральный заряд при этом 𝑐→ ∞. Мы
взяли параметры 𝛼 полей такими, что они стремятся к ∞ при 𝑏 → 0, такие поля
называют тяжелыми. Легкие поля (то есть такие, что 𝛼 постоянно при 𝑏 → 0) не
вносят вклад в 𝑆cl, но вносят вклад в предэкспоненту.
Экстремумы действия 𝑆cl удовлетворяют уравнению Лиувилля. Например возь-

мем в качестве Σ сферу Римана C̄ с плоской вне бесконечности метрикой 𝑑𝑧𝑑𝑧. Тогда
получим ⎧⎪⎨⎪⎩

𝜕𝜕𝜙 = 𝑚𝑒2𝜙

𝜙(𝑧, 𝑧) = 2𝜂𝑘 log |𝑧 − 𝑧𝑘|2 +𝑂(1), 𝑧 → 𝑧𝑘

𝜙(𝑧, 𝑧) → − log |𝑧|2 +𝑂(1) 𝑧 → ∞.

(8.3)

Задача 8.2. Что будет, если взять на сфере Римана метрику постоянной кри-

визны (метрику Фубини Штуди) 1
(|𝑧|2+1)2

𝑑𝑧𝑑𝑧 ?

Уравнение 𝜕𝜕𝜙 = 𝑚𝑒2𝜙 называется уравнение Лиувилля (см. прошлую лекцию).
Другие два условия можно воспринимать как граничные условия.
Для решения уравнения Лиувилля можно построить голоморфный и антиголо-

морфный токи:

𝑇 = −(𝜕𝜙)2 + 𝜕2𝜙 ⇒ 𝜕𝑇 = 0, (8.4)

𝑇 = −(𝜕𝜙)2 + 𝜕2𝜙 ⇒ 𝜕𝑇 = 0. (8.5)

Зная токи 𝑇, 𝑇 можно наоборот пытаться найти 𝜙, используя уравнение (7.2). Пусть
𝜓1, 𝜓2 два решения уравнения

(𝜕2 + 𝑇 )𝜓 = 0,

𝜓1, 𝜓2 два решения уравнения
(𝜕2 + 𝑇 )𝜓 = 0.

Тогда
𝜙 = − log𝑀𝑖𝑗𝜓𝑖𝜓𝑗 , (8.6)

для числовой матрицы 𝑀 .

Задача 8.3. Докажите, 𝜙 удовлетворяет уравнению Лиувилля для некоторого 𝑚
зависящего от матрицы 𝑀 и нормировки 𝜓𝑖, 𝜓𝑗.

В терминах 𝑇 (𝑧) граничные условия в точках 𝜁𝑘 означают, что

𝑇 (𝑧) =
𝑛∑︁

𝑘=1

𝛿𝑘
(𝑧 − 𝑧𝑘)2

+
𝑐𝑘

𝑧 − 𝑧𝑘
+ 𝑇0(𝑧)

Здесь 𝛿𝑘 = 2𝜂𝑘(1 − 𝜂𝑘), 𝑇0(𝑧) не имеет особенностей кроме бесконечности, 𝑐𝑘 назы-
ваются акцессорными параметрами. Условие поведения на бесконечности имеет вид
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𝑇 (𝑧) ∼ 𝑂(1/𝑧4). Отсюда следует, что 𝑇0 = 0 и кроме того возникает три уравнения
на 𝑐𝑘: ∑︁

𝑐𝑘 = 0,

𝑛∑︁
𝑘=1

𝑐𝑘𝑧𝑘 + 𝛿𝑘 = 0,
∑︁

𝑐𝑘𝑧
2
𝑘 + 2𝛿𝑘𝑧𝑘 = 0. (8.7)

Таким образом у нас есть 𝑛− 3 свободных параметра.

Замечание 8.1. При замене координат 𝑇 (𝑧) ведет себе как 2-форма. Они двойствен-
ны векторным полям. На сфере есть три голомофных векторных поля 𝜕𝑧, 𝑧𝜕𝑧, 𝑧

2𝜕𝑧.
Сумма вычетов свертки этих векторных полей 𝑇 (𝑧) должна быть равна нулю, это
означают условия (8.7).

Замечание 8.2. Уравнение (𝜕2 + 𝑇 )𝜓 = 0 имеет симметрию

𝑧 → 𝑓(𝑧), 𝜓(𝑧) → 𝑓 ′(𝑧)−1/2𝜓(𝑧), 𝑇 → 𝑓(𝑧)2𝑇 (𝑧) + {𝑓(𝑧), 𝑇 (𝑧)},

где {·, ·} — производная Шварца. Для дробно-линейных преобразований 𝑓(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

она равна нулю.

8.3. Случай четырех точек

Пусть теперь 𝑛 = 4. Переведем точки (𝑧1, 𝑧2, 𝑧3, 𝑧4) в (0, 𝑥, 1,∞). Тогда уравнение
(𝜕2 + 𝑇 )𝜓 = 0 перейдет в уравнение Гойна

𝜓′′ +

(︂
𝛿1
𝑧2

+
𝛿2

(𝑧 − 𝑥)2
+

𝛿3
(𝑧 − 1)2

+
𝑥(𝑥− 1)𝑐

𝑧(𝑧 − 1)(𝑧 − 𝑥)
+
𝛿1 + 𝛿2 + 𝛿3 − 𝛿4

𝑧(𝑧 − 1)

)︂
𝜓 = 0.

Замечание 8.3. Это можно записать как матричное уравнение первого порядка
𝜒′ =

∑︀4
𝑘=1

𝐴𝑘
𝑧−𝑧𝑘

𝜒, где 𝜒 двухкомпонентный вектор столбец. Уравнению Гойна соот-
ветствует специальный случай, если переходить от общего уравнения на 𝜒 то воз-
никнет полюс в еще одной дополнительной точке 𝑦 (этот полюс не будет давать
монодромии). При изомонодромной деформации, то есть,вариации 𝑥 при условии
сохранения монодромии зависимость 𝑦(𝑥) описывается уравнение Пенлеве 𝑉 𝐼.

Решения 𝜓 около точки 𝑧𝑘 имеют ассимптотики (𝑧 − 𝑧𝑘)𝜂𝑘 и (𝑧 − 𝑧𝑘)1−𝜂𝑘 . Пусть
𝑀 — монодромия этого уравнения при обходе вокруг точек 0, 𝑥. Пусть tr𝑀 = ch(𝜋𝜈).
Фиксируем 𝜈, 𝛿 получаем 𝑐 = 𝑐(𝜈|𝑥). Классический конформный блок определяется
из соотношения

𝑐(𝜌|𝑥) =
𝜕𝑓(𝜌|𝑥)

𝜕𝑥
.

9. Классический конформный блок как предел
квантового

9.1. Акцессорные параметры из действия Лиувилля

Мы перешли к классическим конформным блокам стартуя с корреляционной функ-
ции (8.2)

⟨𝒱𝛼1(𝑧1, 𝑧1) . . .𝒱𝛼4(𝑧4, 𝑧4)⟩, (9.1)
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все параметры 𝛼𝑘 там были «тяжелыми», т.е. имели вид 𝛼𝑘 = 𝜂𝑘/𝑏. Стандартным
способом изучать корреляторы в конформной теории поля является вставка вырож-
денных полей Φ𝑚,𝑛. Простейший пример это вырожденное поле 𝑉−𝑏/2 — поле Φ1,2,
соответствующий модуль Верма имеет нуль вектора на 2-м уровне (см. лекцию 7).
Пусть 𝑛 (количество точек) равно 4. Рассотрим теперь специальную 5-точечную

корреляционную функцию

Ψ(𝑧, 𝑧) = ⟨𝒱−𝑏/2(𝑧, 𝑧)𝒱𝛼1(𝑧1, 𝑧1 · · · 𝒱𝛼4(𝑧4, 𝑧4)⟩. (9.2)

Тогда (︃
𝜕2𝑧
𝜕𝑧2

+ 𝑏2
4∑︁

𝑘=1

(︂
∆(𝛼𝑘)

(𝑧 − 𝑧𝑘)2
+

1

𝑧 − 𝑧𝑘
𝜕𝑧𝑘

)︂)︃
Ψ(𝑧, 𝑧) = 0. (9.3)

В пределе

Ψ(𝑧, 𝑧)
𝑏→0−−→ 𝜓(𝑧, 𝑧) exp

(︂
1

𝑏2
𝑆c𝑙(𝑧, 𝑧)

)︂
(9.4)

Отсюда следует, что

𝜓′′(𝑧) +

𝑛∑︁
𝑘=1

(︂
𝛿𝑘

(𝑧 − 𝑧𝑘)2
+

𝑐𝑘
𝑧 − 𝑧𝑘

)︂
𝜓 = 0, где 𝑐𝑘 =

𝜕𝑆c𝑙
𝜕𝑧𝑘

. (9.5)

Тут на самом деле рассуждения не строгие, корреляционная функция (9.1) являет
собой сумму (интеграл) по промежуточному импульсу от произведения конформно-
го блока на сопряженный и на структурную константу

⟨𝒱𝛼1(0, 0)𝒱𝛼2(𝑞, 𝑞)𝒱𝛼3(1, 1)𝒱𝛼4(𝑧4, 𝑧4)⟩ =
∑︁
𝑃

C(𝑃 )
⃒⃒
ℱ(𝛼⃗, 𝑃 |𝑞)

⃒⃒2
, (9.6)

здесь 𝑞 — двойное отношение точек 𝑧1, 𝑧2, 𝑧3, 𝑧4. В пределе 𝑃 ∼ 𝜈/𝑏 корреляционная
функция имеет вид exp( 1

𝑏2
(𝑓+𝑓+log C(𝑃 ))), где сделана квазиклассика про 𝜈 (т.е. 𝜈

решает уравнение 𝜕𝑓
𝜕𝜈 + 𝜕𝑓

𝜕𝜈 + 𝜕C
𝜕𝜈 = 0). Про классический конфорный блок c таким 𝜈 мы

показали (9.5), а дальше предполагаем, что это верно всегда, это иногда называется
гипотезой Полякова (доказанной Зографом-Тахтаджяном).

Замечание 9.1. Можно находить 𝜓 пользуясь тем, что если 𝑧𝑖 = 𝑧𝑗 , то уравнение
сводится к гипергеометрическому уравнению Гаусса, а далее ответ искать в виде
ряда по 𝑧𝑖 − 𝑧𝑗 .

9.2. Классический конформный блок из квантового

Через ℱ(𝛼⃗, 𝑃 |𝑧) мы обозначим четырехточечтный конформный блок, нормирован-
ный на 1, т.е.

ℱ(𝛼⃗, 𝑃 |𝑞) =
∑︁

ℱ𝑁𝑞
𝑁 , (9.7)

где
ℱ𝑁 =

∑︁
𝜆,𝜇

𝐺𝜆,𝜇⟨𝛼1|𝑉𝛼2(1)|𝑃, 𝜆⟩⟨𝑃, 𝜇|𝑉𝛼3(1)|𝛼4⟩,
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где |𝑃, 𝜆⟩ какой-то базис в модуле Верма 𝑉Δ𝑃
на уровне 𝑁 , (обычно 𝜆 это диграммы

Юнга из 𝑁 клеток), 𝐺𝜆,𝜇 — матрица обратная к форме Шаповалова.
Гипотеза Замолодчикова гласит, что

logℱ(𝛼⃗, 𝑃 |𝑞) =
1

𝑏2
𝑓(𝜂⃗, 𝜈|𝑞) + 𝑜(1), при 𝑏→ 0. (9.8)

Нетривиальность этого утверждение можно понять например следующим образом.
Легко видеть, что ℱ𝑁 ∼ 𝑏−2𝑁 . Тогда, коффициенты логарифма log(

∑︀
𝐹𝑁𝑞

𝑁 ) =∑︀
𝑓𝑁𝑞

𝑁 тоже априори имеют такую ассимптотику 𝑓𝑁 ∼ 𝑏−2𝑁 . Гипотеза Замолод-
чикова утверждает, что на самом деле 𝑓𝑁 ∼ 𝑏−2.

9.3. Некрасовские интегралы

Соответсвтие Алди-Гайотто-Тачикаы (АГТ соответствие) утверждает, что

𝑍N𝑒𝑘(𝑞) =
∑︁

𝑍𝑁𝑞
𝑁 = (1 − 𝑞)2𝛼2𝛼3ℱ(𝑞). (9.9)

Здесь 𝑍𝑁 определены как многократные контурные интегралы (иногда их называют
интегралами Лосева-Мура-Некрасова-Шаташвили — LNMS интегралы)

𝑍𝑁 =
1

(2𝜋𝑖)𝑁
1

𝑁 !

∫︁
· · ·
∫︁ 𝑁∏︁

𝑘=1

𝑄(𝑥𝑘)
∏︁

1≤𝑖<𝑗≤𝑁

𝑉 (𝑥𝑖 − 𝑥𝑗)𝑑𝑥1 . . . 𝑑𝑥𝑁 , (9.10)

где

𝑄(𝑥) = −𝜀1 + 𝜀2
𝜀1𝜀2

∏︀4
𝑓=1(𝑥+𝑚𝑓 )

𝑃 (𝑥)𝑃 (𝑥+ 𝜀1 + 𝜀2)
, 𝑃 (𝑥) = (𝑥− 𝑎1)(𝑥− 𝑎2),

𝑉 (𝑥) =
𝑥2(𝑥2 − (𝜀1 + 𝜀2)

2)

(𝑥2 − 𝜀21)(𝑥
2 − 𝜀22)

, 𝑏 =

√︂
𝜀2
𝜀1
, 𝑎1 − 𝑎2 =

𝑃
√
𝜀1𝜀2

,

𝑚1 = (𝛼1 + 𝛼2 −
𝑄

2
)
√
𝜀1𝜀2, 𝑚2 = (𝛼1 − 𝛼2 +

𝑄

2
)
√
𝜀1𝜀2,

𝑚3 = (𝛼3 + 𝛼4 −
𝑄

2
)
√
𝜀1𝜀2 𝑚4 = (𝛼3 = 𝛼4 −

𝑄

2
)
√
𝜀1𝜀2

В этих обозначениях классический предел 𝑏→ 0 эквивалентен пределу 𝜀2 → 0, усло-
вие, что все поля тяжелые будет означать, что параметры 𝑎,𝑚 остаются конечными.
Функция 𝑍N𝑒𝑘(𝑞) называется (интанстнонной) Некрасовской статистической сум-

мой для 4-мерной 𝒩 = 2 суперсимметричной калибровочной теории с группой
𝑆𝑈(2). Параметры 𝑎1, 𝑎2 это вакуумные средние калибровочного поля, 𝑚𝑓 — массы
полей материи.
Вопрос выбора контура в формуле (9.10) довольно интересный. В случае когда

количество параметров 𝑚𝑓 в определении 𝑄(𝑥) меньше 4, можно считать, что па-
раметры имеют маленькую вещественную часть 𝑎 = 𝑎R + 𝑖𝛿, 𝜀 = 𝜀R + 𝑖𝛿, и контур
интегрирования проходит по вещественным значениям 𝑥𝑖. В случае 4 параметров
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𝑚𝑓 (который собственно и отвечает конформному блоку) интеграл по веществен-
ным значениям становится расходящимся, тогда говорят что-то про продолжение
интеграла вверх.
Другой способ это упорядочить интегрирования, скажем считать, что внешнее

интегрирование ведется по 𝑥𝑁 и контур проводится так, чтобы внутри были полюса
𝑎1, 𝑎2, 𝑥𝑘 + 𝜀𝑗 , где 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑗 = 1, 2. Затем берется интегрирование на 𝑥𝑁−1,
контур проводится так, чтобы внутри были полюса 𝑎1, 𝑎2, 𝑥𝑘 + 𝜀𝑗 , где 1 ≤ 𝑘 ≤ 𝑁 −2,
𝑗 = 1, 2, и так далее. Вычисляя эти интегралы по вычетам можно получить другую
стандартную Некрасовскую формулу в вид суммы по наборам диаграмм Юнга.

10. Классический конформный блок как предел
квантового II

10.1. Взятие LNMS интеграла по вычетам: схема

Разберем для начала упрощенный пример интеграла (9.10).

𝑍𝑚
𝑁 =

1

(2𝜋𝑖)𝑁

∫︁
· · ·
∫︁

𝐹 (𝑥1, . . . , 𝑥𝑁 )∏︀𝑁
𝑘=1

∏︀𝑚
𝑗=1(𝑥𝑘 − 𝑎𝑗)

∏︁
1≤𝑖<𝑗≤𝑁

(𝑥𝑖 − 𝑥𝑗)
2

(𝑥𝑖 − 𝑥𝑗)2 − 𝜀2
𝑑𝑥1 . . . 𝑑𝑥𝑁 , (10.1)

Будем считать, что Im 𝑎𝑗 > 0, Im 𝜀 > 0, 𝐹 — симметричная функция, не имеющая
мешающих нам особенностей, интегрирование ведется по вещественным значениям
𝑥𝑖, но будем деформировать интеграл вверх.

Пример 10.1. Пусть 𝑁 = 2,𝑚 = 1. Возьмем сначала интеграл по 𝑥2:

𝑍1
2 =

1

(2𝜋𝑖)2

∫︁
R

∫︁
𝑚𝑎𝑡ℎ𝑏𝑏𝑅

𝐹 (𝑥1, 𝑥2)

(𝑥1 − 𝑎)(𝑥2 − 𝑎)

(𝑥1 − 𝑥2)
2

(𝑥1 − 𝑥2)2 − 𝜀2
=

=

∫︁
R

(︂
𝐹 (𝑥1, 𝑎)(𝑥1 − 𝑎)2

(𝑥1 − 𝑎)((𝑥1 − 𝑎)2 − 𝜀2)
+

𝐹 (𝑥1, 𝑥1 + 𝜀)𝜀2

(𝑥1 − 𝑎)(𝑥1 + 𝜀− 𝑎)2𝜀

)︂
𝑑𝑥1

Теперь по 𝑥1 есть полюса в точках 𝑎, 𝑎+ 𝜀, 𝑎− 𝜀. Вычет в последнем полюсе равен

𝐹 (𝑎− 𝜀, 𝑎)𝜀2

2𝜀2
+
𝐹 (𝑎− 𝜀, 𝑎)𝜀2

−𝜀 · 2𝜀
= 0

Это на самом деле естественно, если считать, что Im 𝜀 > Im 𝑎, то такого полюса
просто нет в нашем контуре, а так как ответ не зависит от таких неравенств, то
значит вычет в этом полюс должен равнятся нулю. Сумма вычетов в первых двух
равна

𝑍1
2 =

𝐹 (𝑎, 𝑎+ 𝜀)𝜀2

2𝜀2
+
𝐹 (𝑎+ 𝜀, 𝑎)𝜀2

𝜀 · 2𝜀
= 𝐹 (𝑎, 𝑎+ 𝜀).

Аналогично получается, что

𝑍1
𝑁 = (· · · )𝐹

(︁
𝑎, 𝑎+ 𝜀, . . . , 𝑎+ (𝑁 − 1)𝜀

)︁
. (10.2)
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Если 𝑚 > 1, то ответ дается суммой вкладов занумерованных наборами 𝑙1, . . . , 𝑙𝑚,∑︀
𝑙𝑗 = 𝑁 , и соответствующий вклад пропорционален

𝐹
(︁
𝑎1, 𝑎1 + 𝜀, . . . , 𝑎1 + (𝑙1 − 1)𝜀, . . . , 𝑎𝑚, 𝑎𝑚 + 𝜀, . . . , 𝑎𝑚 + (𝑙𝑚 − 1)𝜀

)︁
.

Т.е. точки в который мы вычисляем вычет разбиты на 𝑚 струн от каждой из 𝑎𝑗 .
Рассмотрим теперь честный интеграл

𝑍𝑚
𝑁 =

1

(2𝜋𝑖)𝑁
1

𝑁 !

∫︁
· · ·
∫︁
𝐹 (𝑥1, . . . , 𝑥𝑁 )∏︀∏︀

(𝑥𝑘 − 𝑎𝑙)

∏︁
𝑖<𝑗

𝑥2𝑖𝑗(𝑥
2
𝑖𝑗 − (𝜀1 + 𝜀2)

2)

(𝑥2𝑖𝑗 − 𝜀22)(𝑥
2
𝑖𝑗 − 𝜀22)

𝑑𝑥1 . . . 𝑑𝑥𝑁 , (10.3)

где 𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 . Опять будем считать, что Im 𝑎𝑙 > 0, Im 𝜀1 > 0, Im 𝜀2 > 0. Тогда
ответ задается суммой по диаграммам Юнга где полюса в точках 𝑎𝑙 + 𝑖𝜀1 + 𝑗𝜀2.

Задача 10.1. Вычислите интеграл (10.3) по вычетам при 𝑁 = 2.

10.2. Классический предел, неправильное рассуждение

Мы хотим взять предел 𝜀2 → 0. Напишем

𝑍𝑁 =
1

𝑁 !

∫︁ ∏︁
𝑖<𝑗

𝑉 (𝑥𝑖 − 𝑥𝑗)
∏︁

𝑄(𝑥𝑘)𝑑𝑥𝑘,

где

𝑉 (𝑥) =
𝑥2(𝑥− (𝜀1 + 𝜀2)

2)

(𝑥2 − 𝜀21)(𝑥
2 − 𝜀22)

, 𝑄(𝑥) = −𝜀1 + 𝜀2
𝜀1𝜀2

∏︀
(𝑥+𝑚𝑓 )

𝑃 (𝑥)𝑃 (𝑥+ 𝜀1 + 𝜀2)
, 𝑃 (𝑥) = (𝑥−𝑎1)(𝑥−𝑎2)

Введем новые обозначения 𝜀2 → 0: 𝑉 (𝑥) = 𝑒−𝜀2𝐺(𝑥), 𝜀2𝑄(𝑥) = 𝑊 (𝑥).

𝑍 →
∞∑︁

𝑁=0

𝑞𝑁

𝑁 !

∫︁ ∏︁
𝑖<𝑗

𝑒−𝜖2𝐺(𝑥𝑖−𝑥𝑗)
∏︁𝑊 (𝑥𝑘)

𝜀2
𝑑𝑥𝑘 (10.4)

Возьмем 𝜌(𝑥) =
∑︀
𝛿(𝑥− 𝑥𝑘). Тогда можно перейти к квадратичному функциональ-

ному интегралу∏︁
𝑖<𝑗

𝑒−𝜖2𝐺(𝑥𝑖−𝑥𝑗) = exp

(︂
−𝜀2

2

∫︁
𝜌(𝑥)𝜌(𝑦)𝐺(𝑥− 𝑦)𝑑𝑥𝑑𝑦

)︂
=

=

∫︁
𝐷𝜙 exp

(︂
−1

2𝜀2

∫︁
𝜙(𝑥)𝜙(𝑦)𝐺−1(𝑥− 𝑦)𝑑𝑥𝑑𝑦

)︂
exp

(︂∫︁
𝜌(𝑥)𝜙(𝑥)𝑑𝑥

)︂
Отсюда, используя 𝑒

∫︀
𝜌(𝑥)𝜙(𝑥)𝑑𝑥 =

∏︀
𝑒𝜙(𝑥𝑘) получаем

𝑍 =

∫︁
𝐷𝜙 exp

(︂
−1

2𝜀2

∫︁
𝜙(𝑥)𝜙(𝑦)𝐺−1(𝑥− 𝑦)𝑑𝑥𝑑𝑦

)︂(︃ ∞∑︁
𝑁=0

𝑞𝑁

𝑁 !

(︁∫︁ 𝑊 (𝑥)

𝜀2
𝑑𝑥
)︁𝑁)︃

=

=

∫︁
𝐷𝜙 exp

1

𝜀2

(︂
1

2

∫︁
𝜙𝜙𝐺−1 +

∫︁
𝑞𝑊𝑒𝜙

)︂
∼ 𝑒

−1
𝜀2

𝑆cl ,
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где 𝑆cL вычисляется на экстремуме действия.
На самом деле этот ответ неправильный, в правильном ответе вместо 𝑞𝑊 (𝑥)𝑒𝜙(𝑥)

стоит Li2(𝑞𝑊 (𝑥)𝑒𝜙(𝑥)), где Li𝑠(𝑧) =
∑︀
𝑧𝑘/𝑘𝑠.

Выражение
∫︀
𝑊 (𝑥)𝑒𝜙(𝑥)𝑑𝑥 можно рассматривать как некий аналог скрининга.

10.3. Более аккуратное вычисление

Идея следующего вычисления написана в [17, Sec 6.4] (см. также [7]). Надо учиты-
вать, что при вычислении по полюсам точки начинаются слипаться, это происходит
когда точки начинают отличаться на кратное 𝜀2. Такой набор из близких значений
𝑥𝑘 в интеграле называется кластером, он характеризуется количество переменных.
Таким образом ответ может быть записан в виде сумме по диграммам Юнга 𝜆,

где длины строк это размеры кластеров. Мы обозначим через 𝑚𝑘 количество строк
длины 𝑘 в диаграмме 𝜆, конечно большинство 𝑚𝑘 равны 0. Тогда

𝑍𝑁 =
∑︁

∑︀
|𝜆|=𝑁

𝑍𝜆, (10.5)

где

𝑍𝜆 =
1

(2𝜋𝑖𝜀2)
∑︀

𝑚𝑘

∞∏︁
𝑘=1

(−𝑞)𝑚𝑘𝑘

𝑘2𝑚𝑘𝑚𝑘!∫︁ ∏︁
𝑘,𝑙

∏︁
𝑖,𝑗

exp
(︁
−𝜀2𝑑𝑘𝑑𝑙𝐺(𝑥

(𝑘)
𝑖 − 𝑥

(𝑙)
𝑗 )
)︁ ∞∏︁

𝑘=1

𝑚𝑘∏︁
𝑗=1

𝑄(𝑥
(𝑘)
𝑗 )𝑘

𝑚𝑘∏︁
𝑗=1

𝑑𝑥
(𝑘)
𝑗

Замечание 10.1. Отметим, что эти диаграммы Юнга отличаются от диаграмм
Юнга возникших при вычислении по полюсам выше, в частности в этом рассужде-
нии диаграмма всегда одна, а там их количество равнялось рангу калибровочной
группы (количеству параметров 𝑎𝑙).

Теперь переходя к функциональному интегралу по полю 𝜙 аналогично прошлом
пункту мы получаем

𝑍𝜆 =

∫︁
𝐷𝜙 exp

(︂
−1

2𝜀2

∫︁
𝜙(𝑥)𝜙(𝑦)𝐺−1(𝑥− 𝑦)𝑑𝑥𝑑𝑦

)︂∏︁
𝑘

1

𝑚𝑘!

(︂∫︁
1

𝑘2
(︀
−𝑞𝑄(𝑥)𝑒𝜙(𝑥)

)︀𝑘
𝑑𝑥

)︂𝑚𝑘

Теперь суммируя по каждому 𝑚𝑘 по отдельности мы получаем, что

∑︁
𝑚1,...,𝑚𝑘

∏︁
𝑘

1

𝑚𝑘!

(︂
1

𝑘2

∫︁ (︀
−𝑞𝑄(𝑥)𝑒𝜙(𝑥)

)︀𝑘
𝑑𝑥

)︂𝑚𝑘

=

= exp

(︃∑︁
𝑘

1

𝑘2

∫︁ (︀
−𝑞𝑄(𝑥)𝑒𝜙(𝑥)

)︀𝑘
𝑑𝑥

)︃
= exp

(︂∫︁
Li2(−𝑞𝑄(𝑥)𝑒𝜙(𝑥))𝑑𝑥

)︂
)
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Итого получаем

𝑍 =

∫︁
𝐷𝜙 exp

1

𝜀2

(︂∫︁
𝜙𝜙𝐺−1 +

∫︁
Li2(−𝑞𝑄(𝑥)𝑒𝜙)

)︂
). (10.6)

Варьируя по 𝜙 получаем уравнение экстремума∫︁
𝐺−1(𝑥− 𝑦)𝜙(𝑦) + log(1 −𝑄(𝑥)𝑒𝜙(𝑥)) = 0,

или, обращая оператор c ядром 𝐺(𝑥− 𝑦)

𝜙(𝑥) +

∫︁
𝐺(𝑥− 𝑦) log

(︁
1 − 𝑞𝑄(𝑦)𝑒𝜙(𝑦)

)︁
𝑑𝑦 = 0. (10.7)

A. Сингулярные вектора и полиномы Джека

A.1. Выбор контура

Как уже было сказано в лекции 2 сингулярный вектор может быть записан в виде

𝑆
(𝑛)
+ |𝛼⟩, см. формулу (2.7). Явно сингулярный вектор имеет вид

∫︁
Γ𝑛

⎛⎝:exp
(︁
𝛼+

𝑛∑︁
𝑗=1

∑︁
𝑘>0

1

𝑘
𝑎−𝑘𝑥

𝑟
𝑗

)︁
: |𝛼⟩

⎞⎠∏︁
𝑗<𝑗′

(𝑥𝑗 − 𝑥𝑗′)
𝛼2
+

𝑛∏︁
𝑗=1

𝑥
𝛼𝛼+

𝑗 𝑑𝑥𝑗 . (A.1)

Будем интегрировать аналогично пункту 2.3. Немного формально запишем экс-

поненту
(︁

:exp
(︁
𝛼+
∑︀𝑛

𝑗=1

∑︀
𝑘>0

1
𝑟𝑎−𝑘𝑥

𝑘
𝑗

)︁
: |𝛼⟩

)︁
в виде суммы

∑︀
𝐴𝑚1,...,𝑚𝑛𝑥

𝑚1
1 · . . . ·𝑥𝑚𝑛

𝑛 ,

где показатели 𝑚𝑖 ∈ Z≥0, 𝐴𝑚1,...,𝑚𝑛 — это какие-то вектора в Фоковском модуле
F𝛼+𝑛𝛼+ . Сделаем замену переменных в интеграле

𝑥1 = 𝑦𝑦1, 𝑥2 = 𝑦𝑦2, ; . . . , 𝑥𝑛−1 = 𝑦𝑦𝑛−1, 𝑥𝑛 = 𝑦.

Тогда удобно считать, что Γ𝑛 это произведение цикла по 𝑦 вокруг нуля и какого-то
цикла 𝐶𝑛−1. интеграл сведется к⎛⎝∑︁

𝑘𝑖

∫︁
𝑦𝑛𝛼𝛼++(𝑛2)𝛼

2
++

∑︀
𝑚𝑖+(𝑛−1)𝑑𝑦

⎞⎠∫︁
𝐶𝑛−1

(︁∏︁
𝑦𝑚𝑖
𝑖

)︁ ∏︁
𝑗<𝑗′

(𝑦𝑗−𝑦𝑗′)𝛼
2
+

∏︁
𝑦
𝛼𝛼+

𝑗 (1−𝑦𝑗)𝛼
2
+𝑑𝑦𝑗 .

(A.2)
Первый интеграл по 𝑦 не равен нулю только если 𝑛𝛼𝛼+ +

(︀
𝑛
2

)︀
𝛼2
+ +

∑︀
𝑚𝑖 +𝑛 = 0. Мы

получили условие, что 𝑛𝛼𝛼+ +
(︀
𝑛
2

)︀
𝛼2
+ + 𝑛 ∈ Z<0.

Остается второй интеграл. В нем можно взять не замкнутый (абсолютный) цикл,
а относительный цикл, цикл на границе которого подинтегральное выражение за-
нуляется. Такой цикл легко предъявить, это симплекс

𝐶𝑛−1 =
{︁
𝑦1, . . . , 𝑦𝑛−1|0 ≤ 𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑛−1 ≤ 1

}︁
.
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Более того, так как вектор 𝐴𝑚1,...,𝑚𝑛 симметричен по перестановке индексов можно
после этого перейти к интегралу по кубу 0 ≤ 𝑦1, . . . , 𝑦𝑛−1 ≤ 1, при этом заменив
(𝑦𝑖 − 𝑦𝑗) на |𝑦𝑖 − 𝑦𝑗 |.
Получается интеграл типа интеграла Сельберга. Напомним, что интеграл Сель-

берга это обобщение Бета интеграла в виде∫︁
[0,1]𝑛−1

∏︁
𝑖<𝑗

|𝑦𝑖−𝑦𝑗 |2𝛾
∏︁

𝑦𝛼−1
𝑗 (1−𝑦𝑗)𝛽−1𝑑𝑦𝑗 =

𝑛−1∏︁
𝑗=1

Γ(𝛼+ (𝑗−1)𝛾)Γ(𝛽 + (𝑗−1)𝛾)Γ(1+𝑗𝛾)

Γ(1 + 𝛾)Γ(𝛼+ 𝛽 + (𝑗+𝑛−3)𝛾)

(A.3)
Интеграл сходится при условии

Re𝛼 > 0, Re𝛽 > 0, Re 𝛾 > − 1

𝑛− 1
,− Re𝛼

𝑛− 2
,− Re𝛽

𝑛− 2
.

Нам предстоит теперь разобраться когда сингулярный вектор определенный по
формуле (A.2) не равен нулю. Предположим, что

𝛼𝛼+ +

(︂
𝑛

2

)︂
𝛼2
+ = −𝑛𝑚− 𝑛, (A.4)

где 𝑚 ∈ Z≥0. Тогда в формуле (A.2) есть слагаемое

1

(𝑛− 1)!
𝐴𝑚,...,𝑚

∫︁
[0,1]𝑛−1

∏︁
𝑖<𝑗

|𝑦𝑖 − 𝑦𝑗 |𝛼
2
+

∏︁
𝑦
𝛼𝛼++𝑚
𝑗 (1 − 𝑦𝑗)

𝛼2
+𝑑𝑦𝑗 =

1

(𝑛− 1)!
𝐴𝑚,...,𝑚

𝑛−1∏︁
𝑗=1

Γ((𝑗−𝑛)𝛼2
+/2)Γ(1 + (𝑗+1)𝛼2

+/2)

Γ(1 + 𝛼2
+/2)

(A.5)

Таким образом мы получили ненулевой коэффициент. Ниже мы покажем, что𝐴𝑚,...,𝑚

линейно независим от остальных 𝐴𝑚1,...,𝑚𝑛 c условием
∑︀
𝑚𝑖 = 𝑛𝑚, значит сингуляр-

ный вектор заданный формулой (A.2) не равен нулю.
Мы использовали условие (A.4), оно эквивалентно может быть записано в виде

2𝛼𝛼+ + (𝑛− 1)𝛼2
+ = −2(𝑚+ 1), откуда следует, что 𝛼 = 𝑚+1

2 𝛼− − 𝑛−1
2 𝛼+, откуда

𝛼+ 𝑛𝛼+ =
(𝑚+ 1)𝛼− + (𝑛+ 1)𝛼+

2
= 𝛼−𝑚,−𝑛,

где мы использовали формулу (1.15). Мы показали, что при ∆ = ∆𝑚,𝑛 фоковский
модуль (а значит и модуль Верма) имеет сингулярный вектор.
Мы не обсуждали вопрос сходимости интеграла (A.5) (и более общо аналогичного

интеграла для общих 𝑚1, . . . ,𝑚𝑘). По приведенному выше критерию он сходится
если

Re𝛼2
+ > −1, Re𝛼𝛼+ > −𝑚− 1,

1

2
Re𝛼2

+ > − 1

𝑛− 1
,−𝛼𝛼+ +𝑚+ 1

𝑛− 2
,−

𝛼2
+ + 1

𝑛− 2
.
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Хочется сказать, что числа Re𝛼2
+,Re𝛼𝛼+ очень большие, но это противоречит усло-

вию (1.4). На самом деле видимо нельзя сделать так, чтобы симплекс 𝐶𝑛 работал
для всех наборов 𝑚1, . . . ,𝑚𝑛 (?)3. Но интеграл (A.5) все таки обслужить можно.

Замечание A.1. Если наше предположение (A.4) неверное, то на самом деле сумма
коэффициентов при 𝐴𝑚1,...,𝑚𝑛 по всем перестановкамии индексов𝑚𝑖 равна нулю, для
случая 𝑛 = 2 мы это видели на лекции (2).

Замечание A.2. Другой стандартный выбор контура 𝐶𝑛−1 это Фельдеровский
цикл [10] : произведение 𝑛 − 1 окружности начинающейся и заканчивающейся в 1
и охватывающих ноль. Можно считать, что эти окружности вложены друг в друга,
тогда этот контур может быть продеформирован в симплекс 𝐶𝑛−1 использованный
выше. При этом для сходимости (и интегрования по частям) нужно будет только
положительности вещественной части 𝛼2

+.
А чтобы доказать, что интеграл не равен нулю можно член при 𝐴𝑚,...,𝑚 проде-

формировать в симплекс и воспользоваться интегралом Сельберга.

A.2. Полиномы Джека

Сделаем небольшое отступление. Пространство Фока удобно отождествлять с про-
странством симметрических многочленов от бесконечного числа переменных 𝑥1, 𝑥2, . . ..
Это пространство есть просто пространство многочленов от образующих 𝑝𝑘 =

∑︀
𝑥𝑘𝑖 ,

эти образующие называются степенными суммами. Есть другой набор образующих
𝑒𝑘 =

∑︀
𝑥𝑖1 · . . . · 𝑥𝑖𝑘 , где суммирование ведется по наборам 𝑖1 < . . . < 𝑖𝑘, эти обра-

зующие называются элементарными симметрическими многочленами. Два набора
образующих 𝑒𝑘 и ℎ𝑘 связаны посредством замены∑︁

𝑘≥0

(−1)𝑘𝑒𝑘𝑧
𝑘 =

∏︁
𝑖

(1 − 𝑥𝑖𝑧) = exp
(︁ ∑︁

𝑖,𝑘>0

𝑥𝑘𝑖
−𝑘

𝑧𝑘
)︁

= exp(
∑︁
𝑘>0

−1

𝑘
𝑝𝑘𝑧

𝑘), (A.6)

здесь и далее мы считаем, что 𝑒0 = 1. На пространстве симметрических многочленов
есть разные аддитивные базисы, они нумеруются разбиениями 𝜆 = (𝜆1 ≥ 𝜆2 ≥ . . .).

𝑒𝜆 = 𝑒𝜆1𝑒𝜆2 . . . , 𝑝𝜆 = 𝑝𝜆1𝑝𝜆2 . . . , 𝑚𝜆 = 𝑥𝜆1
1 𝑥

𝜆2
2 . . .+ symmetric terms. (A.7)

Базис 𝑚𝜆 называется мономиальным.
На самом деле эти базисы уже возникали выше. Если мы заменим −𝛼+𝑎−𝑘 на 𝑝𝑘,

то многочлены 𝑝𝜆 будут соответствовать стандартному ПБВ базису в Фоковском
модуле. А вектора 𝐴𝑚1,...,𝑚𝑛 использованные выше это просто произведения 𝑒𝑚1 ·
. . . · 𝑒𝑚𝑛 . Мы сразу получили, что эти вектора являются линейно независимыми
(при упорядоченных 𝑚𝑖).
Про вектор 𝐴𝑚,...,𝑚, непосредственно использовавшийся, выше можно напрямую

сказать, что соответствующий полином 𝑒(𝑚𝑛) в разложении по мономиальному ба-
зису содержит член 𝑚(𝑚𝑛), а в других 𝑒𝑚1 · . . . · 𝑒𝑚𝑛 с

∑︀
𝑚𝑖 = 𝑚𝑛 его нет. Таким

3Нам нужно еще чтобы при интегрировании по частям вклад от границы равнялся нулю, для
этого нужно зануление на границе, что налагает еще более сильные условия на 𝛼, 𝛼+.
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образом мы доказали, что сингулярный вектор для ∆𝑛,𝑚 отличен от нуля и более
того, написали для него формулу в бозонизации с фиксированной нормировкой —
коэффициент при 𝑚(𝑚𝑛) определяется по формуле (A.5).
Точно утверждение о виде сингулярного вектора после бозонизации доказали Ми-

мачи и Ямада [15], мы ниже скорее следуем работе [6]. Сингулярный вектор про-
порционален симметрической функции Джека. Эти функции зависят от параметра
𝛾 и обозначаются 𝑃 𝛾

𝜆 или 𝐽𝛾
𝜆 , (на самом деле вместо 𝛾 часто пишут 𝛼, но эта буква

уже перегружена выше).
Функции 𝑃 𝛾

𝜆 определяются двумя условиями: 𝑃 𝛾
𝜆 = 𝑚𝜆 +

∑︀
𝜇<𝜆𝑚𝜇 и 𝑃 𝛾

𝜆 попарно
ортогональны относительно скалярного произведения в котором оператор ортого-
нальный умножению на 𝑝𝑘 равен 𝑝

*
𝑘 = 𝛾𝑘𝜕/𝜕𝑝𝑘.

Нормировка 𝐽𝛾
𝜆 отличается от 𝑃 𝛾

𝜆 тем, что в разложении 𝐽𝛾
𝜆 по базису 𝑝𝜇 коэф-

фициент при 𝑝𝑛1 равен 1, в этой нормировки все коэфициенты становятся полино-
миальными по 𝛾. Примеры полиномов Джека

𝐽1 = 𝑝1, 𝐽2 = 𝑝21 + 𝑝2, 𝐽1,1 = 𝑝21 − 𝑝2 (A.8)

𝐽3 = 𝑝31 + 3𝛾𝑝2𝑝1 + 2𝛾2𝑝3, 𝐽2,1 = 𝑝31 + (𝛾−1)𝑝2𝑝1 − 𝛾𝑝3, 𝐽1,1,1 = 𝑝31 − 3𝑝2𝑝1 + 2𝑝3.
(A.9)

Еще одной свойство симметрических функций Джека это, то, что они являются
собственными относительно системы коммутирующий операторов: 𝐼𝑘𝐽

𝛾
𝜆 = 𝜖𝛾𝜆,𝑘𝐽

𝛾
𝜆 .

Первые два из этих операторов имеют вид:

𝐼1 =
∑︁
𝑘>0

𝑝𝑘𝑝
*
𝑘, 𝐼2 =

∑︁
𝑘,𝑙>0

(︁
𝑝𝑙𝑝𝑙𝑝

*
𝑘+𝑙 + 𝑝𝑘+𝑙𝑝

*
𝑘𝑝

*
𝑙

)︁
+ (𝛾 − 1)

∑︁
𝑘>0

𝑘𝑝𝑘𝑝
*
𝑘. (A.10)

Высшие операторы это отдельная история (см. Макдональда или Склянина-Назарова
или ...). Собственные значения равны

𝜖𝛾𝜆,1 =
∑︁

(𝑖,𝑗)∈𝜆

1 =
∑︁

𝜆𝑖, 𝜖𝛾𝜆,2 = 𝛾
(︁ ∑︁

𝑖,𝑗∈𝜆
((2𝑖− 1)𝛾 − (2𝑗 − 1))

)︁
= 𝛾

(︁
𝛾
∑︁

𝜆2𝑖 −
∑︁

(𝜆′𝑗)
2
)︁

Отметим, что спектр пары операторов 𝐼1, 𝐼2 приведенных выше, является вырож-
денным, существуют такие 𝜆, 𝜇, что 𝜖𝛾𝜆,1 = 𝜖𝛾𝜇,1 и 𝜖

𝛾
𝜆,2 = 𝜖𝛾𝜇,2, поэтому нужные высшие

операторы. Но можно заметить, что подобные равенства могут возникнуть только
если 𝜆 и 𝜇 несравнимы относительно доминантного порядка.
Запишем теперь оператор 𝐼2 в терминах Гейзенберга, заменим 𝑝𝑘 на−𝛼+𝑎−𝑘, двой-

ственные операторы 𝑝*𝑘 заменим на −1
2𝛼+𝑎𝑘. Вместо 𝛾 мы подставим 𝛼2/2 (сравните

с интегралом (A.3)), тогда из соотношения [𝑝*𝑘, 𝑝𝑘] = 𝑘𝛾 мы получаем [𝑎𝑘, 𝑎−𝑘] = 𝑘.
Итого мы можем написать

𝐼2 = (−𝛼+)3
(︁∑︁

𝑟>0

𝑎−𝑟

(︃∑︁
𝑠

𝑎𝑠𝑎𝑟−𝑠 +
1

𝑖
√

2
(𝑏+ 𝑏−1)(𝑟 + 1)𝑎𝑟

)︃
−

− (2𝑎0 +
𝛾 − 1

−𝛼+
)
∑︁

𝑎−𝑟𝑎𝑟

)︁
. (A.11)
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Выражение в скобках есть генератор 𝐿𝑟 алгебры Вирасоро по формуле (1.2)4. Таким
образом получаем, что сингулярный вектор является собственным для 𝐼2 c собствен-
ным значением

(−𝛼+)3
(︁

2
𝑚𝛼− + (𝑛+ 1)𝛼+

2
−𝛼+ + 𝛼−

2

)︁
(𝑚−1)𝑛 = 𝛾(𝛾(𝑚−1)2𝑛+𝑛2(𝑚−1)) = 𝜖𝛾(𝑚)𝑛,2

Из этого сразу следовало, бы что сингулярный вектор пропорционален полиному
Джека 𝑃 𝛾

(𝑚)𝑛 . если бы н вырожденность спектра 𝐼2.

Задача A.1. Покажите, что в формуле для сингулярного вектор встречаются

только 𝑚𝜇, где 𝜇 < (𝑚)𝑛 (сравнение в доминантом порядке). Выведете из этого,

что сингулярный вектор пропорционален полиному Джека.

Мы также можем найти коэффициент пропорциональности, так как 𝑚(𝑚)𝑛 встре-
чается в сингулярном вектор с коэффицентом (A.5).

Замечание A.3. Аналогичное утверждение верно и для 𝑊 алгебр для 𝑊 (̂︀gl(𝑛)),
при этом сингулярные вектора соответствуют 𝐽𝛾

𝜆 , в которой диаграмма 𝜆 состоит
из не более чем 𝑛− 1 прямоугольного блока.

Замечание A.4. Квантовой системой Калоджера-Сазерленда называется система
с гамильтонианом вида

𝐻̂𝐶𝑆 = −
𝑁∑︁
𝑗=1

1

2

(︂
𝜕

𝜕𝑞𝑗

)︂2

+ (
𝜋

𝐿
)2
∑︁
𝑖<𝑗

𝑔(𝑔 − 1)

sin2 𝜋
𝐿(𝑞𝑖 − 𝑞𝑗)

(A.12)

Это система 𝑁 частиц на окружности длины 2𝐿.
Собственные функции ищутся в виде 𝑃 (𝑥𝑖)

∏︀
𝑖<𝑗 sin𝑔

(︀
𝜋
𝐿(𝑞𝑖 − 𝑞𝑗)

)︀
, где 𝑥𝑖 = exp 2𝜋𝑖

𝐿 𝑞𝑖,

𝑃 — симметрический полином. Произведение 𝑝𝑟𝑜𝑑𝑖<𝑗 sin𝑔
(︀
𝜋
𝐿(𝑞𝑖 − 𝑞𝑗)

)︀
— е это (три-

гонометрический) аналог Вандермонда и может быть рассмотрено как основное со-
стояние для системы Калоджераю. Обычно предполагают, что 𝑔 > 1 для интегри-
руемости. В терминах 𝑥𝑖 гамильтониан имеет вид

𝐻̂𝐶𝑆 =
∑︁(︂

𝑥𝑗
𝜕

𝜕𝑥𝑖

)︂2

+ 𝑔
∑︁
𝑖<𝑗

𝑥𝑖 + 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

(︂
𝑥𝑖

𝜕

𝜕𝑥𝑖
− 𝑥𝑗

𝜕

𝜕𝑥𝑗

)︂
Задача A.2. Покажите, что действие 𝐻̂𝐶𝑆 является треугольным в базисе 𝑚𝜆

с числами на диагонали равными 𝜖𝛾𝜆,2.

Задача A.3. Напишите действие оператора 𝐻̂𝐶𝑆 на 𝑝𝜆 и выведите из этого, что

в пределе, когда число переменных 𝑁 стремится к бесконечности, то этот Га-

мильтониан совпадает с 𝐼2 определенным в формуле (A.10).

Один из способов доказывать наличие бесконечной системы коммутирующий опе-
раторов 𝐼1, 𝐼2, . . . это получить 𝑁 таких операторов для Калоджера (при помощи
операторов Данкл или при помощи операторов Секигучи), а потом перейти к преде-
лу. То, что получится в пределе называется квантованием уравнения (классической
интегрируемой системы) Бенджамина-Оно.
4отметим, что на после такой перенормировки член 𝑎−𝑟𝑎−𝑠𝑎𝑟+𝑠 получается с вдвое большим ко-
эффициентом 𝑎−𝑟−𝑠𝑎𝑟𝑎𝑠, так и надо для того, чтобы получилась алгебра Вирасоро
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A.3. Бенджамин Оно

Интегрируемая система (A.10) является квантованием системы Бенджамина-Оно,
см. например [16]. Мы будем работать для периодический функций на вещественной
оси

𝜃(𝑥) = 𝜙(𝑧) =
∑︁
𝑛∈Z

𝑝𝑛𝑧
𝑛,

где 𝑧 = exp(−𝑖𝑥). На этих функциях мы рассмотрим скобку по стандартным фор-
мулам

{𝜃(𝑥), 𝜃(𝑦)} = 2𝜋𝛿′(𝑥− 𝑦), или {𝑝𝑛, 𝑝𝑚} = 𝑖𝑛𝛿𝑚+𝑛.

Будем считать, что 𝑝0 = 0.
Определим проектции 𝜙(𝑧) → 𝜙±(𝑧) по формуле

𝜙+(𝑧) =
∑︁
𝑘>0

𝑝−𝑘𝑧
𝑘, 𝜙+(𝑧) =

∑︁
𝑘>0

𝑝𝑘𝑧
−𝑘,

Периодическое преобразование Гильберта определяется по формуле

(ℋ𝜙)(𝑧) = −𝑖𝜙+(𝑧) + 𝑖𝜙−(𝑧) = p.v.

∫︁ 2𝜋

0

𝑑𝑥

2𝑝𝑖
cot

𝑥− 𝑦

2
𝜃(𝑥) (A.13)

Уравнение Бенджамина-Оно пишется по Гамильтониану

𝐼 =

∫︁ 2𝜋

0

𝑑𝑥

2𝜋

(︂
1

3
𝜃3(𝑥) +

1

2
𝜃′(𝑥)(ℋ𝜃)(𝑥)

)︂
=

=
∑︁
𝑘,𝑙>0

(︁
𝑝𝑘𝑝𝑙𝑝−𝑘−𝑙 + 𝑝𝑘+𝑙𝑝−𝑘𝑝−𝑙

)︁
+
∑︁
𝑘>0

𝑘𝑝𝑘𝑝−𝑘. (A.14)

Это как раз классический (𝛾 → 0) предел Гамильтониана 𝐼2 из (A.10). Само урав-
нение имеет вид

𝜕

𝜕𝑡
𝜙(𝑧) = {𝜙(𝑧), 𝐼} =

(︁
𝑧
𝜕

𝜕𝑧

)︁2
(ℋ𝜙)(𝑧) − 𝑖

(︁
𝑧
𝜕

𝜕𝑧

)︁
𝜙2(𝑧), (A.15)

или, в терминах компонент

𝜕𝑝𝑘/𝜕𝑡 = −𝑖𝑘2𝑝𝑘 + 2𝑖𝑘
∑︁
𝑙≥1

𝑝𝑘+𝑙𝑝−𝑙 + 𝑖𝑘
∑︁

1≤𝑙<𝑘

𝑝𝑙𝑝𝑘−𝑙,

𝜕𝑝𝑘/𝜕𝑡 = 𝑖𝑘2𝑝𝑘 − 2𝑖𝑘
∑︁
𝑙≥1

𝑝𝑘+𝑙𝑝−𝑙 − 𝑖𝑘
∑︁

1≤𝑙<𝑘

𝑝𝑙𝑝𝑘−𝑙.
(A.16)

Есть представление Лакса в терминах интегрально-дифференциальных операторов.
Их можно записать как

𝐿 =

⎛⎜⎜⎜⎜⎜⎝
−1 𝑝1 𝑝2 𝑝3 . . .

𝑝−1 −2 𝑝1 𝑝2
. . .

𝑝−2 𝑝−1 −3 𝑝1
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ , 𝑀 = 𝑖

⎛⎜⎜⎜⎜⎜⎝
1 −2𝑝1 −2𝑝2 −2𝑝3 . . .

−2𝑝−1 4 −4𝑝1 −4𝑝2
. . .

−2𝑝−2 −4𝑝−1 9 −6𝑝1
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ ,
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Легко проверить, что уравнения (A.16) эквивалентны 𝜕𝐿/𝜕𝑡 = [𝑀,𝐿].
Стандартным способом построения интегрируемой системы является спектраль-

ный детерминант det(𝑢 − 𝐿), или его логарифмическая производную tr. Тут есть
проблемы с неограниченным спектром. Как пишут в [16] этой интегрируемой си-
стеме соответствует рациональная спектральная кривая и, поэтому, рассматривает
матричный элемент 𝑝(𝐿− 𝑢)−1𝑝*, где 𝑝 = (𝑝−1, 𝑝−2, . . .), 𝑝* = (𝑝1, 𝑝2, . . .)

𝑡.
Более того, такая же схема работает после квантования. А именно, будем работать

с операторами 𝑝𝑘, 𝑝
*
𝑘, как в формуле (A.10). Расмотрим оператор 𝐿 и два вектора

𝐿 =

⎛⎜⎜⎜⎜⎜⎝
𝛾 − 1 𝑝1 𝑝2 𝑝3 . . .

𝑝*1 2(𝛾 − 1) 𝑝1 𝑝2
. . .

𝑝*2 𝑝*1 3(𝛾 − 1) 𝑝1
. . .

...
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠ , 𝑝 = (𝑝1, 𝑝2, . . .), 𝑝* =

⎛⎜⎝𝑝
*
1

𝑝*2

,
...

⎞⎟⎠ . (A.17)

Тогда операторы 𝐼𝑘 определенные по формуле

𝐼(𝑢) =
∑︁
𝑘=1

𝐼𝑘𝑢
−𝑘𝐼𝑘 = 𝑝(𝑢− 𝐿)−1𝑝*. (A.18)

Разлагая 𝑢− 𝐿 в ряд по формуле 𝑢−1 + 𝐿𝑢−2 + 𝐿2𝑢−3 мы получаем формулу

𝐼𝑘 =
∞∑︁

𝑖1,...,𝑖𝑘=1

𝑝𝑖1𝐿𝑖1𝑖2 · · ·𝐿𝑖𝑘−1𝑖𝑘𝑝
*
𝑖𝑘
. (A.19)

Видно, что 𝑖1, 𝐼2 совпадают с приведенным в формуле (A.10). Спектр 𝐼(𝑢) в базисе
полиномов Джека 𝑃 𝛾

𝜆 равен

𝜖(𝑢)𝛾𝜆 = 𝑢−(𝑢+𝑙(𝜆))

𝑙(𝜆′)∏︁
𝑖=1

𝑢+ 𝑖− 1 − 𝛾𝜆𝑖
𝑢+ 𝑖− 𝛾𝜆𝑖

= 𝑢(1−
∏︁
𝑠∈𝜆

(𝑢+ 𝑖− (𝑗−1)𝛾)(𝑢+ (𝑖−1) − 𝑗𝛾)

(𝑢+ (𝑖−1) − (𝑗−1)𝛾)(𝑢+ 𝑖− 𝑗𝛾)
).
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