Nilpotent orbits

Ivan Motorin

17.10.2020

For drawings

Ivan Motorin Nilpotent orbits 17.10.2020 2 / 23

Adjoint orbits

Reminder. There is a Poisson structure on \mathfrak{g}^* and coadjoint orbits are symplectic submanifolds for it.

Proposition 1.

Adjoint orbits in $\mathfrak g$ are even-dimensional.

Proof: there is an invariant non-degenerate symmetric form $K(\cdot,\cdot)$ on \mathfrak{g} , so we can identify \mathfrak{g} and \mathfrak{g}^* via

$$i_K(X) = K(X,*) \quad \forall X \in \mathfrak{g}$$

Also for any $x \in G_{ad}$ we have

$$i_K(x \cdot X) = K(x \cdot X, *) = K(X, x^{-1} \cdot (*)) = Ad_X^* i_K(X)$$

Therefore adjoint orbits in $\mathfrak g$ are in one to one correspondence with coadjoint orbits in $\mathfrak g^*$. \square

Semisimple orbits

Fix a Cartan subalgebra ${\mathfrak h}$ of ${\mathfrak g}.$ Then the following map is surjective

$$ilde{\mu}:\mathfrak{h} o \{ ext{semisimple orbits}\} \qquad ilde{\mu}(X)=\mathcal{O}_X$$

Lemma 1.

$$W \cong N_{G_{ad}}(\mathfrak{h})/C_{G_{ad}}(\mathfrak{h}),$$

where
$$N_{G_{ad}}(\mathfrak{h}) = \{x \in G_{ad} | x \cdot \mathfrak{h} = \mathfrak{h}\},\$$

 $C_{G_{ad}}(\mathfrak{h}) = \{x \in G_{ad} | x \cdot Y = Y \quad \forall Y \in \mathfrak{h}\}.$

Idea of proof: $\theta_i = \exp(ad_{X_i}) \cdot \exp(-ad_{Y_i}) \cdot \exp(ad_{X_i})$ generates reflection s_i in co-roots. One can show that $C_{G_{ad}}(\mathfrak{h}) = T$ (maximal torus in G_{ad} having a lie algebra \mathfrak{h}) then prove that the stabilizer of the dominant Weyl chamber must be T.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - か Q (C)

Semisimple orbits

Reminder If \mathfrak{g} is reductive and X is semisimple then $Z_{\mathfrak{g}}(X)$ is reductive subalgebra.

Theorem 1.

The following map is bijective:

$$\mu: \mathfrak{h}/W \to \{\text{semisimple orbits}\}$$
 $\mu([X]) = \mathcal{O}_X$

Proof: the map is well defined (Lemma 1). If $\mu([X_1]) = \mu([X_2])$ then $\exists x \in G_{ad}, x \cdot X_1 = X_2$, so Cartan subalgebras $\mathfrak{h}, x \cdot \mathfrak{h}$ have common element X_2 . It means that $\mathfrak{h}, x \cdot \mathfrak{h} \subset Z_{\mathfrak{g}}(X_2)$ and $\mathfrak{h}, x \cdot \mathfrak{h}$ are conjugate by some y from $Z_{G_{ad}}^{\circ}(X_2)$. Therefore $y \cdot x \cdot \mathfrak{h} = \mathfrak{h}$ and $y \cdot x \cdot X_1 = y \cdot X_2 = X_2$ thus $[X_1] = [X_2]$.

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 5 / 23

Semisimple orbits

If Π is a set of simple roots of $\mathfrak g$ then by theorem 1 μ is bijective map from D_{Π} :

$$D_{\Pi} = \{ x \in \mathfrak{h} | \forall \alpha \in \Pi \quad \Re(\alpha(x)) > 0 \text{ or } \Re(\alpha(x)) = 0, \Im(\alpha(x)) \ge 0 \}$$

to semisimple orbits. In particular there are infinitely many semisimple orbits.

Ivan Motorin Nilpotent orbits 17.10.2020 6 / 23

Orbit closure

Lemma 2.

Fix an orbit \mathcal{O} and $X=X_s+X_n\in\mathfrak{g}$ such that $X\in\bar{\mathcal{O}}$ then $X_s\in\bar{\mathcal{O}}$.

Proof: notice that $\mathcal{O}_X\subseteq \bar{\mathcal{O}}$. $[X_s,X_n]=0$ therefore X_n lies in reductive $Z_{\mathfrak{g}}(X_s)$. Also X_n is nilpotent in \mathfrak{g} so its semisimple part must be zero thus $X_n\in [Z_{\mathfrak{g}}(X_s),Z_{\mathfrak{g}}(X_s)]$. By Jacobson-Morozov theorem there is $h\in [Z_{\mathfrak{g}}(X_s),Z_{\mathfrak{g}}(X_s)],[h,x_n]=2x_n$, so if we act by exponent of ch for a large negative $c\in \mathbb{R}$ on X we will get that $X_s\in \bar{\mathcal{O}}$. \square

Remark. In particular if X is nilpotent then $\{0\} \subseteq \bar{\mathcal{O}}_X$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Closed semisimple orbits

Fact. There is an isomorphism of algebras $\mathbb{C}[\mathfrak{g}]^{G_{ad}} \cong \mathbb{C}[\mathfrak{h}]^W$ (via restriction).

Proposition 2.

If $X, Y \in \mathfrak{h}$ and $X \notin W \cdot Y$ then $\exists f \in \mathbb{C}[\mathfrak{h}]^W, f(X) \neq f(Y)$.

Proof: for a $w \in W$ pick a $g_w \in \mathfrak{h}^*$ so that $g_w(Y) = 1, g_w(w \cdot X) = 0$. Let $g = 1 - \prod_{w \in W} g_w$. Then $f = \prod_{w \in W} g \circ w$ suits the requirement as f(Y) = 0, f(X) = 1. \square

Ivan Motorin Nilpotent orbits 17.10.2020 8 / 23

Closed semisimple orbits

Theorem 2. (Borel, Harish-Chandra)

An element of reductive Lie algebra $\mathfrak g$ is semisimple if and only if $\mathcal O_X$ is closed.

Proof: suppose that X is semisimple. Let $Y \in \bar{\mathcal{O}}_X$ then $\mathcal{O}_Y \subseteq \bar{\mathcal{O}}_X$, $\bar{\mathcal{O}}_Y \subseteq \bar{\mathcal{O}}_X$ and $\mathcal{O}_{Y_s} \subseteq \bar{\mathcal{O}}_X$. If $f \in \mathbb{C}[\mathfrak{g}]^{G_{ad}}$ then it must be constant on \mathcal{O}_X and $\bar{\mathcal{O}}_X$, so $f(X) = f(Y_s)$. By the fact and proposition 2: $\mathcal{O}_X = \mathcal{O}_{Y_s}$. We know that $\mathcal{O}_{Y_s} \subseteq \bar{\mathcal{O}}_Y$. So $\bar{\mathcal{O}}_Y = \bar{\mathcal{O}}_X$ and $\mathcal{O}_Y = \mathcal{O}_X$. Reverse statement follows from lemma 2. \square

Remark. \mathcal{O} is nilpotent if and only if $\{0\} \subseteq \bar{\mathcal{O}}$. In particular \mathcal{N} must be the zero set of all $f \in \mathbb{C}[\mathfrak{g}]^{G_{ad}}$, such that f(0) = 0.

Nilpotent orbits

Lemma 3.

Let $\mathfrak n$ be the nilradical of a Borel subalgebra of $\mathfrak g$. Then $G_{ad} \cdot \mathfrak n = \mathcal N$. In particular, if a subset $\mathcal X$ of $\mathfrak n$ is dense in latter then $G_{ad} \cdot \mathcal X$ is dense in $\mathcal N$.

Proof: Any nilpotent element forms a nilpotent subalgebra of $\mathfrak g$ so it can be conjugated to a subalgebra of $\mathfrak n$. \square

Lemma 4.

Let H, X, Y be a \mathfrak{sl}_2 triple in \mathfrak{g} which forms ad_H -eigenspace decomposition $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$. Then $dim(\mathcal{O}_X) = dim(\mathfrak{g}) - dim(\mathfrak{g}_0) - dim(\mathfrak{g}_1)$.

Proof: $Z_{\mathfrak{g}}(X)$ is ad_H -stable, therefore $Z_{\mathfrak{g}}(X)=\oplus_{i\in\mathbb{Z}}Z_{\mathfrak{g}}(X)\cap\mathfrak{g}_i$. It follows that $Z_{\mathfrak{g}}(X)$ is the sum of the highest weight spaces, dimension of which is exactly $dim(\mathfrak{g}_0)+dim(\mathfrak{g}_1)$. \square

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 10 / 23

Kostant lemma

Denote $\mathfrak{q} = \bigoplus_{i \geq 0} \mathfrak{g}_i$, $\mathfrak{q}_i = \bigoplus_{j \geq i} \mathfrak{g}_j$. Let $\mathfrak{q} = Lie(Q)$, $Q \subset G_{ad}$ (closed, connected) and $\mathcal{P} = (G_{ad}^H)^\circ \cdot X$.

Lemma 5. (Kostant)

$$\mathcal{O}_X \cap \mathfrak{q}_2 = Q \cdot X = \mathcal{P} + \mathfrak{q}_3$$

In particular $\mathcal{O}_X \cap \mathfrak{q}_2$ is open and dense in \mathfrak{q}_2 (as $dim(\mathcal{P}) = dim(\mathfrak{g}_2)$ by Maltsev theorem).

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 9000

11/23

Kostant lemma

```
Proof: X + \mathfrak{q}_3 \subset Q \cdot X then \mathcal{P} + \mathfrak{q}_3 \subset Q \cdot X as well. On the other hand Q \cdot X \subseteq \mathcal{P} + \mathfrak{q}_3 by definition. Therefore Q \cdot X = \mathcal{P} + \mathfrak{q}_3 and Q \cdot X \cap \mathfrak{q}_2 is open dense in \mathfrak{q}_2.
```

Now let $X' \in (G_{ad} \cdot X \cap \mathfrak{g}_2)$ then $dim(Z_{\mathfrak{g}}(X')) = dim(Z_{\mathfrak{g}}(X))$. Since $Z_{\mathfrak{g}}(X) \subset \mathfrak{q}$ we have $dim(Z_{\mathfrak{q}}(X')) = dim(Z_{\mathfrak{q}}(X') \cap \mathfrak{q}) \leq dim(Z_{\mathfrak{q}}(X) \cap \mathfrak{q}) = dim(Z_{\mathfrak{q}}(X))$.

Therefore $dim(Q \cdot X') \ge dim(Q \cdot X)$ and $Q \cdot X' \cap Q \cdot X \ne \emptyset$. \square

12 / 23

Principal orbit

Theorem 3.(de Siebenthal, Dynkin, Kostant)

In a semisimple \mathfrak{g} there exists a unique orbit of maximal dimension $dim(\mathfrak{g}) - rank(\mathfrak{g})$ denoted by \mathcal{O}_{prin} which is open dense in \mathcal{N} .

Proof: Let Π be a set of simple roots. We fix standard triples $\{H_{\alpha}, X_{\alpha}, Y_{\alpha}\}$ in \mathfrak{g} corresponding to $\alpha \in \Pi$. We can find $H = \sum_{\alpha \in \Pi} a_{\alpha} H_{\alpha}$ so that

$$\forall \alpha \in \Pi$$
 $\alpha(H) = 2$. $H, X = \sum_{\alpha \in \Pi} X_{\alpha}, Y = \sum_{\alpha \in \Pi} a_{\alpha} Y_{\alpha}$ is a standard triple.

Clearly $\mathfrak{q}_2=\mathfrak{n}$ thus \mathcal{O}_X is open dense in \mathcal{N} (and unique) by lemmas 3,5.

We also notice that $\mathfrak{g}_0=\mathfrak{h},\mathfrak{g}_1=0.$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

13 / 23

Typical semisimple orbit

Corollary. Because orbit \mathcal{O}_X is an image of G_{ad} in \mathfrak{g} and G_{ad} is irreducible, it follows that \mathcal{N} is irreducible.

Remark. Dimension of \mathcal{O}_{prin} coincides with dimension of typical semisimple orbit. Typical in a sense that semisimple X from \mathcal{O}_X lies strictly inside of a Weyl chamber (X is regular).

Ivan Motorin Nilpotent orbits 17.10.2020 14/23

Subregular orbit

Theorem 4. (Steinberg)

There exists a unique nilpotent orbit that is open and dense in $\bar{\mathcal{O}}_{prin} \setminus \mathcal{O}_{prin} = \mathcal{N} \setminus \mathcal{O}_{prin}$ denoted \mathcal{O}_{subreg} and its dimension is $dim(\mathfrak{g}) - rank(\mathfrak{g}) - 2$.

Idea of proof: we can see from previous theorem that $X' = \sum_{\alpha \in \Pi} c_{\alpha} X_{\alpha}$ belongs to \mathcal{P} iff all c_{α} are nonzero. We can define hyperplanes in \mathfrak{g}_2 defined as $\mathcal{D}_{\alpha} = \{X' \in \mathfrak{g}_2 | c_{\alpha} = 0\}$. The complement of $Q \cdot X$ in \mathfrak{q}_2 is union of $\mathcal{C}_{\alpha} := \mathcal{D}_{\alpha} + \mathfrak{q}_3$. We want to find an orbit \mathcal{O}_{α} whose intersection with \mathcal{C}_{α} is open dense in latter. After that we need to show that $\mathcal{O}_{\alpha} = \mathcal{O}_{\beta} = \mathcal{O}_{\textit{subreg}}$.

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 15 / 23

Minimal orbit

We can easily observe that 0 is the orbit of minimal dimension $(Z(\mathfrak{g}) = 0)$.

Theorem 5.

There exists a nonzero nilpotent orbit of minimal dimension $\mathcal{O}_{min} = \mathcal{O}_{X_{\theta}}$ which is contained in closure of any nonzero nilpotent orbit and X_{θ} is a nonzero vector in the highest root space.

There is a partial order structure on set of orbits which reads $\mathcal{O} \leq \mathcal{O}'$ iff $\bar{\mathcal{O}} \subseteq \bar{\mathcal{O}}'$. It is correct because Lie group orbits are open dense in their closure.

Ivan Motorin Nilpotent orbits 17.10.2020 16 / 23

Minimal orbit

Proof: Suppose
$$X \in \mathcal{O}, X = \sum_{\alpha \in \Phi_+} c_\alpha X_\alpha$$
.

We can conjugate X so that $c_{\theta} \neq 0$. Namely, choose a maximal (w.r.t. standard partial order) β so that $c_{\beta} \neq 0$. If $\alpha \in \Pi, \alpha + \beta$ is a root then we can find $c \neq 0$ $\exp(cZ_{\alpha}) \cdot X$ so that $c_{\alpha+\beta} \neq 0$.

Fix $H \in \mathfrak{h}$ so that $\forall \alpha \in \Pi$ $\alpha(H) = 2$. By conjugation of X with $\exp(rH)$ for large $r \in \mathbb{R}$ we can make its θ component arbitrary large in comparison with other components then we scale resulting nilpotent element back by

 $H' \in \mathfrak{h}$ from \mathfrak{sl}_2 triple corresponding to the new X. \square

Ivan Motorin Nilpotent orbits 17.10.2020 17 / 23

Minimal orbit

Lemma 6.

 $dim(\mathcal{O}_{min})$ equals one plus number of positive roots not orthogonal to θ .

Proof: X_{θ} and $Z_{\mathfrak{g}}(X_{\theta})$ are $ad_{\mathfrak{h}}$ -stable. Now any positive root element annihilates X_{θ} as well as an appropriate hyperplane in \mathfrak{h} . Negative root element $X_{-\beta}$ annihilates X_{θ} iff $(\theta, \beta) = 0$ (as $(\theta, \beta)X_{\beta} = [H_{\theta}, X_{\beta}]$). \square Here is a table of orbit dimensions for classical Lie algebras:

group type	\mathfrak{sl}_n	\mathfrak{sp}_{2n}	\mathfrak{so}_{2n}	\mathfrak{so}_{2n+1}
$dim(\mathcal{O}_{min})$	2n-2	2n	4n-6	4n-4

Remark. These numbers coincide with $2h^{\vee} - 2$.

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 18 / 23

Classical types

Proposition 3.1

If
$$\mathfrak{g}=\mathfrak{sl}_n$$
, then $\mathcal{O}_{prin}=\mathcal{O}_n, \mathcal{O}_{subreg}=\mathcal{O}_{n-1,1}, \mathcal{O}_{min}=\mathcal{O}_{2,1^{n-2}}$. Also $\mathcal{O}_{\mu}\subseteq\bar{\mathcal{O}}_{\lambda}$ iff $\lambda\gg\mu$.

Proof (of the second statement): $\forall \lambda \in \mathcal{P}(n), \mathcal{O}_{\lambda}$ contains matrices X such that ranks of their powers are fixed: $rkX^i = a_{\lambda,i}$. $\bar{\mathcal{O}}_{\lambda}$ can contain only matrices with $a_{\mu,i} \leq a_{\lambda,i}$, because the set of matrices of $rk \leq k$ is closed. One can show that

 $\mathit{rkX}^k_\lambda = \sum_{\{i \mid \lambda_i > k\}} (\lambda_i - k)$

and that $\lambda\gg\mu$ iff $\forall k\ rkX_{\lambda}^{k}\geq rkX_{\mu}^{k}$. So the task comes down to making a-1,b+1 Jordan block out of a,b-block ($b\leq a-2$). It is possible. \square

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 19 / 23

Classical types

Proposition 3.2

(i) If
$$\mathfrak{g}=\mathfrak{so}_{2n+1}$$
, then $\mathcal{O}_{prin}=\mathcal{O}_{2n+1},\mathcal{O}_{subreg}=\mathcal{O}_{2n-1,1^2},\mathcal{O}_{min}=\mathcal{O}_{2^2,1^{2n-3}}.$ (ii) If $\mathfrak{g}=\mathfrak{sp}_{2n}$, then $\mathcal{O}_{prin}=\mathcal{O}_{2n},\mathcal{O}_{subreg}=\mathcal{O}_{2n-2,2},\mathcal{O}_{min}=\mathcal{O}_{2,1^{2n-2}}.$ (iii) If $\mathfrak{g}=\mathfrak{so}_{2n}$, then $\mathcal{O}_{prin}=\mathcal{O}_{2n-1,1},\mathcal{O}_{subreg}=\mathcal{O}_{2n-3,3},\mathcal{O}_{min}=\mathcal{O}_{2^2,1^{2n-4}}.$

 Ivan Motorin
 Nilpotent orbits
 17.10.2020
 20 / 23

Exponents

Let $\lambda \in \mathcal{P}(N)$ we can construct new partition $\lambda^t = [\lambda_1^t, \dots, \lambda_N^t]$:

$$\lambda_j^t = |\{i | \lambda_i \ge j\}|$$

Define $d = [t_1, t_2, \dots, t_{ht(\theta)}]$, where $t_i = |\{\alpha \in \Phi_+ | ht(\alpha) = i\}|$. Then d^t is a partition which has $I = rank(\mathfrak{g})$ parts $\{m_1, \dots, m_I\}$. These numbers are called exponents of \mathfrak{g} .

Also $\mathfrak{g}\cong \bigoplus_{i}\mathbb{C}^{2m_i+1}$ as a principal \mathfrak{sl}_2 -module.

Theorem 6. (no proof)

 $S(\mathfrak{g}^*)^{G_{ad}}$ is a polynomial algebra generated by algebraically independent homogeneous polynomials f_1, \ldots, f_l with degrees $1 + m_1, \ldots, 1 + m_l$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♡

Ivan Motorin Nilpotent orbits 17.10.2020 21/23

Exponents

g	Exponents	E_6	1,4,5,7,8,11
\mathfrak{sl}_n	$1,2,\ldots,n-1$	E ₇	1,5,7,9,11,13,17
50 _{2n+1}	$1,3,5,\ldots,2n-1$	E_8	1,7,11,13,17,19,23,29
\mathfrak{sp}_{2n}	$1,3,5,\ldots,2n-1$	F_4	1,5,7,11
50 _{2n}	$1,3,5,\ldots,2n-3,n-1$	G_2	1,5

Рис.: Exponents

22 / 23

Springer correspondence

Let X be a nilpotent element of semisimple \mathfrak{g} , $A := A(\mathcal{O}_X) := G_{ad}^X/(G_{ad}^X)^{\circ}$.

Theorem 7. (Springer) (no proof)

There is a bijection between irreducible representations of the Weyl group W of \mathfrak{g} and the following data:

{Nilpotent orbits \mathcal{O}_X and irreducible representations of $A(\mathcal{O}_X)$ }

In the case of \mathfrak{sl}_n $A(\mathcal{O}_X)$ is always trivial, so there are exactly $\mathcal{P}(n)$ irreducible representations of S_n .

23 / 23